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Statistical Mechanics Answer Sheet 7

1. The spin-spin correlation function and scaling relations. (RF Question)

(a) The spin-spin correlation function

g(ri, rj) = 〈 (si − 〈si〉) (sj − 〈sj〉) 〉

= 〈 sisj − 〈si〉sj − si〈sj〉 + 〈si〉〈sj〉 〉

= 〈sisj〉 − 〈si〉〈sj〉 − 〈si〉〈sj〉 + 〈si〉〈sj〉

= 〈sisj〉 − 〈si〉〈sj〉, (1)

where we use that the ensemble average operation 〈·〉 is a linear operation
and that the ensemble average of a constant is the constant itself.

(b) Assuming that the system is translationally invariant, we substitute m =
〈si〉 = 〈sj〉 and find

g(ri, rj) = 〈sisj〉 − m2

= 〈sjsi〉 − m2

= g(rj, ri) (2)

from which it follows that the correlation function is symmetric and thus a
function of the relative distance between the spins at positions ri and rj only,
that is,

g(ri, rj) = g(|ri − rj |). (3)

(c) (i) When |ri − rj| → ∞, the spins become uncorrelated, assuming that we
are not at the critical point that is! Thus

g(ri, rj) = 〈sisj〉 − 〈si〉〈sj〉

→ 〈si〉〈sj〉 − 〈si〉〈sj〉 for |ri − rj | → ∞

= 0. (4)

(ii) By definition the spin-spin correlation function of spin i with itself

g(ri, ri) = 〈sisi〉 − 〈si〉〈si〉 = 〈s2
i 〉 − 〈si〉

2. (5)
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Because si = ±1 ⇔ s2
i = 1 we have 〈s2

i 〉 = 〈1〉 = 1. Also 〈si〉 = m, so

g(ri, ri) = 1 − m2. (6)

We assume the external magnetic field H = 0 so we can replace m with
m0(T ). If T ≥ Tc, the magnetisation m0 = 0 so that

g(ri, ri) =

{

1 for T ≥ Tc

1 − m2
0(T ) for T < Tc.

(7)

The zero-field magnetisation per spin m0(T ) → ±1 for T → 0, implying

g(ri, ri) → 0 for T → 0. (8)

This result emphasises that the correlation function measures the fluctu-
ations of the spins away from the average magnetisation as is clear from
the original definition

g(ri, ri) = 〈 (si − 〈si〉)(sj − 〈sj〉) 〉. (9)

(iii) In the limit J/(kBT ) ≪ 1 (high temperatures relative to the coupling
constant), the spins will be orientated randomly, that is, there are no
correlations between the spins, so we expect g(ri, rj) → 0.

In the limit J/(kBT ) ≫ 1 (low temperatures relative to the coupling
constant), the spins will be aligned, that is, there are no fluctuations
away from the average spin, so we expect g(ri, rj) → 0.

(d) Because the susceptibility per spin diverges at the critical temperature in zero
external field

χ(T, 0) ∝ |T − Tc|
−γ for T → Tc, H = 0 (10)

the volume integral of the correlation function must also diverge at the critical
temperature. Defining r = |ri − rj|, we have

∫

V

g(ri, rj)d
drj ∝

∫

∞

a

g(r)rd−1 dr → ∞ for T → Tc, H = 0, (11)

where a is a lower cutoff = lattice constant. This implies that g(r) cannot
decay exponentially with distance r at the critical point (T, H) = (Tc, 0) since
this would make the integral convergent in the upper limit. However, the
divergence is consistent with an algebraic decay. Assuming

g(ri, rj) ∝ |ri − rj|
−(d−2+η)

= r−(d−2+η) for T = Tc, H = 0, and all r = |ri − rj| (12)
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then
∫

V

g(ri, rj)d
drj ∝

∫

∞

a

g(r)rd−1 dr

∝

∫

∞

a

r−(d−2+η)rd−1 dr

=

∫

∞

a

r1−η dr

=

{

[ 1
2−η

r2−η]
∞

a
if η 6= 2

[ln(r)]∞a if η = 2

that is, the integral will only diverge if the critical exponent η ≤ 2. The
divergence is logarithmic if η = 2 and algebraic if η < 2.

(e) (i) The correlation length diverges as ξ(T, 0) ∝ |Tc − T |−ν for T → Tc, H =
0. The critical exponent ν is independent of whether Tc is approached
from below or above, however, the amplitude might differ, as indicated
in Figure 1 below.

For T > Tc, the correlation length sets the upper linear distance over
which spins are correlated. It is also identified as the linear size of the
typical (characteristic) largest cluster of correlated spins and measures
the typical largest fluctuation away from states with randomly oriented
spins.

For T < Tc, the correlation length measures the fluctuations away from
the fully ordered state, that is, the upper linear size of the holes in the
cluster of aligned spins. There will be holes on all scales up to the corre-
lation length.

(ii) When T 6= Tc a finite correlation length ξ is introduced and

g(|ri − rj|) ∝ |ri − rj|
−(d−2+η)G±(|ri − rj |/ξ) for T → Tc, (13)

where
ξ(T, 0) ∝ |Tc − T |−ν for T → Tc, H = 0. (14)

Consider the relation between the susceptibility per spin and the corre-
lation function

kBTχ ∝

∫

V

g(ri, rj)d
drj. (15)

The left-hand side (LHS):

kBTχ(T, 0) ∝ |T − Tc|
−γ for T → Tc, H = 0. (16)
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Figure 1: Sketch of the correlation length ξ(T, 0) as a function of the temperature T
in units of the critical temperature Tc.
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The right-hand side (RHS):
∫

V

g(ri, rj)d
drj ∝

∫

∞

a

r−(d−2+η)G±(r/ξ)rd−1 dr

=

∫

∞

a

r1−ηG±(r/ξ) dr

=

∫

∞

a

(r̃ξ)1−ηG±(r̃) dr̃ξ with r = r̃ξ

= ξ2−η

∫

∞

a

r̃1−ηG±(r̃) dr̃

= |T − Tc|
−ν(2−η)

∫

∞

a

r̃1−ηG±(r̃) dr̃ for T → T±

c . (17)

The integral is just a number (which numerical value, however, depends
on from which side Tc is approached due to the two different scaling
functions G±), so we can conclude by comparing the LHS with the RHS
that

γ = ν(2 − η). (18)

(iii) We assume T ≤ Tc and consider the situation in zero external field H = 0
with m0 replacing m. We define

g̃(r) = g(r) + m2
0 = 〈sisj〉. (19)

For T < Tc, the correlation length ξ < ∞. As the correlation length sets
the upper limit of the linear scale over which spins are correlated, the
spins will be uncorrelated in the limit r → ∞ as r ≫ ξ. Thus

g̃(r) = 〈sisj〉 → 〈si〉〈sj〉 = m2
0 ∝ (Tc − T )2β for T → T−

c . (20)

This is the reason for considering the function g̃(r) and not g(r) since the
latter will approach zero for r ≫ ξ.

At T = Tc where the correlation length in infinite, the magnetisation is
zero in zero external field, i.e., m0(Tc) = 0. Thus

g̃(r) = g(r) ∝ r−(d−2+η) at T = Tc. (21)

One would thus expect, à la finite-size scaling in percolation theory, that

g̃(r) ∝

{

r−(d−2+η) for r ≪ ξ
ξ−(d−2+η) for r ≫ ξ.

(22)

Thus for T < Tc where the correlation length is finite, we expect

g̃(r) ∝ ξ−(d−2+η) ∝ |T − Tc|
ν(d−2+η) for r ≫ ξ. (23)

Comparing Eq.(23) and Eq.(20) we identify the scaling relation

2β = ν(d − 2 + η) ⇔ d − 2 + η = 2β/ν. (24)
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2. Critical exponents inequality.

Given the thermodynamic relation

χ (CH − CM) = T

(

∂〈M〉

∂T

)2

H

(25)

As CM ≥ 0 and χ ≥ 0 it follows that

χ CH ≥ T

(

∂〈M〉

∂T

)2

H

. (26)

Using the scaling of the different quantities close to the critical point

χ(T, 0) ∝ |T − Tc|
−γ for T → Tc, H = 0,

CH ∝ |T − Tc|
−α for T → Tc, H = 0,

〈M〉 ∝ (Tc − T )β for T → T−

c , H = 0 implying,

∂〈M〉

∂T
∝ −(Tc − T )β−1 for T → T−

c , H = 0

so by substituting into Equation (26) we find

(Tc − T )−γ (Tc − T )−α ≥ Tc

(

−(Tc − T )β−1
)2

for T → T−

c

(Tc − T )−γ−α ≥ Tc (Tc − T )2β−2 for T → T−

c

from which we can conclude that

−γ − α ≤ 2β − 2 ⇔

γ + α ≥ 2 − 2β ⇔

α + 2β + γ ≥ 2. (27)

Notice that the inequality can be repalced by an equality for d = 1, 2, 3, and 4 and
the mean-field exponents for the Ising Model.

3. Eigenvalues, eigenvectors and diagonalisation.

(a) Assume x 6= 0 is an eigenvector for f with eigenvalue λ, that is

f(x) = λx. (28)

Since f is linear,
f(αx) = αf(x) = αλx = λ(αx) (29)

so αx is also an eigenvector with the same eigenvalue λ when α 6= 0 (ensuring
αx 6= 0.
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(b) Assume x 6= 0 is an eigenvector for f with eigenvalue λ. If A is the associated
matrix for the linear function f then

Ax − λx = (A − λI)x = 0, (30)

where I is the identity matrix. If det(A − λI) 6= 0 the matrix A − λI would
be invertible and the only solution to the Equation (30) would be the trivial
solution x = 0. Equation (30) can only have non-trivial solutions x 6= 0 if the
matrix A − λI is not invertible. Therefore, we have

det(A − λI) = 0. (31)

Equation (31) is called the characteristic equation or the secular equation for
the matrix A and the solutions λ are the eigenvalues of A (or f).

(c) We need to show that x1 · x2 = 0 assuming that

f(x1) = λ1x1 and f(x2) = λ2x2 with λ1 6= λ2. (32)

f(x1) · x2 = λ1x1 · x2 (33a)

x1 · f(x2) = λ2x1 · x2. (33b)

Since f is symmetric
λ1x1 · x2 = λ2x1 · x2. (34)

However, λ1 6= λ2 from which we conclude

x1 · x2 = 0. (35)

(d) (i) Consider the real and symmetric matrix

T =

(

exp(βJ + βH) exp(−βJ)
exp(−βJ) exp(βJ − βH)

)

. (36)

The eigenvalues λ± of T are the solutions to the characteristic equation

det(T − λI) = 0. (37)

The determinant

det(T − λI) =

∣

∣

∣

∣

exp(βJ + βH) − λ exp(−βJ)
exp(−βJ) exp(βJ − βH) − λ

∣

∣

∣

∣

= λ2 − [exp(βJ + βH) + exp(βJ − βH)]λ + exp(2βJ) − exp(−2βJ)

= λ2 − 2 exp(βJ) cosh(βH)λ + exp(2βJ) − exp(−2βJ),
(38)
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so the solutions to the characteristic Equation (37) are

λ± =
2 exp(βJ) cosh(βH) ±

√

4 exp(2βJ) cosh2(βH) − 4[exp(2βJ) − exp(−2βJ)]

2

= exp(βJ)

(

cosh(βH) ±

√

cosh2(βH) − 1 + exp(−4βJ)

)

= exp(βJ)

(

cosh(βH) ±

√

sinh2(βH) + exp(−4βJ)

)

. (39)

(ii) Since λ+ > λ−, the associated eigenvectors must be orthogonal. To de-
termine the eigenvectors for T we must solve the equations

Tx+ = λ+x+ (40a)

Tx− = λ−x− (40b)

or equivalently

(T − λ+I)x+ = 0 (40c)

(T − λ−I)x− = 0 (40d)

Then we construct the matrix of eigenvectors

U = (x+ x−) (41)

that will satisfy

U
−1

TU =

(

λ+ 0
0 λ−

)

. (42)
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Problem sheet 8 issued: Tuesday 26th November 2013

Solutions available from: Wednesday 4th December 2013

Statistical Mechanics Answer Sheet 8

1. Second-order PT in a mass-spring system: Landau theory. (RF Question)

(a) The total energy of the mass-spring system

U(θ) = elastic potential energy + gravitational potential energy

=
1

2
k(aθ)2 + mg(a cos θ − a)

=
1

2
ka2θ2 + mga(cos θ − 1). (1)

a
co

s
θ

a − a cos θ θ

a

k

m

O

P

Figure 1: The projection of the rod of length a onto the vertical dashed line has length
a cos θ where the angle θ is measured (positive clockwise) from the vertical. Hence,
the position of the center of mass of the variable mass m is a − a cos θ = a(1 − cos θ)
below the zeroth-level of the gravitational potential energy indicated by the horizontal
dashed line.

(b) (i) We expand the cosine to fourth order to find

U(θ) =
1

2
ka2θ2 + mga(1 −

θ2

2!
+

θ4

4!
− · · · − 1)

=
a

2
(ka − mg)θ2 +

mga

24
θ4 + O(θ6), (2)

where the coefficient of the fourth-order term is positive while the coeffi-
cient of the second-order term is zero for ka = mg and changes sign from
positive when ka > mg to negative when ka < mg.
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(ii) As the total energy U(θ) is an even function in θ (reflecting the symmetry
of the problem), all the odd terms in the Taylor expansion around θ = 0
are zero.

(iii) We denote the angle of equilibrium with θ0. When ka > mg, the unique
minimum is at θ0 = 0. When ka = mg, the unique minimum is at θ0 = 0.
When ka < mg, there are two minima at ±θ0 6= 0.

-1 -0.5 0 0.5 1

0 1
ka/mg

θ

U
(θ

)
θ 0

π/2

−π/2

(a)

(b)

ka > mg

ka = mg

ka < mg

Figure 2: (a) The energy, U(θ), versus the angle θ. The solid circles show the position
of the minima of the energy of the corresponding graph. For ka > mg, the minimal
energy implies θ = 0. For ka = mg, the trivial solution θ = 0 is marginally stable
However, for ka < mg, the minimal energy implies θ = ±θ0 6= 0. (b) The angle of
equilibrium, θ0 as a function of the ratio ka/mg.

(iv) The system is in equilibrium when dU/dθ = 0. Hence

dU

dθ
= a(ka − mg)θ +

mga

6
θ3

= mgaθ

(

ka

mg
− 1 +

1

6
θ2

)

= 0 (3)
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with solutions

θ0 =

{

0 for ka
mg

≥ 1

±
√

6(1 − ka/mg) for ka
mg

< 1

=

{

0 for mc

m
≥ 1

±
√

6[(m − mc)/m] for mc

m
< 1,

(4)

where mc = ka/g.

(v) See Figure 4.

(vi) Landau suggested a simplistic general theory of second-order phase tran-
sitions based on expanding the free energy in powers of the order pa-
rameter. In the absence of a magnetic-like field, symmetry dictates that
only even powers of the order parameter appear in the expansion. For
example, in the Ising model

f − f0 = a2(T − Tc)m
2 + a4m

4 with a2, a4 > 0,

where an expansion up to fourth order is sufficient to give a qualitative
description of second-order phase transitions occurring at temperature
Tc. The term f0 is an unimportant constant, while a4 > 0 in order for
the free energy to be physically realistic, i.e. not minimised by extreme
values of the order parameter. As written, the left-hand side is given
by a quartic polynomial which always has one trivial solution, m = 0,
and two non-trivial solutions, m = ±m0(T ), so long as T < Tc. As T
passes through Tc from above, the trivial solution becomes unstable and
two stable non-trivial solutions appear. Below Tc, therefore, the order
parameter of the system is non-zero.

(vii) The order parameter of the mass-spring system is the equilibrium angle
θ0 which is zero for m ≤ mc and non-zero for m > mc. The critical value
of the variable mass mc = ka/g.

2. Diluted Ising model.

(a) A spin si is situated on each lattice site ri. However, the spin only interacts
with with the nearest neighbours with probability p. Identifying a nonzero
coupling constant Jij = J > 0 as an occupied bond and Jij = 0 as an empty
bond, we have an exact mapping onto a bond percolation theory problem.

(b) (i) At T = 0, the total free energy F = 〈E〉 − TS = 〈E〉. Because an
equilibrium system will minimise the free energy, at T = 0 it will minimise
its energy. In order to minimise the energy, all spins within a given cluster
will point in the same direction. However, spins belonging to different
clusters need not point in the same direction.
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(ii) Within a cluster, si = sj so sisj = s2
i = 1 implying 〈sisj〉 = 1 if the

spins belong to the same cluster. If the spins i and j belong to different
clusters, they are not correlated at all, that is, given, e.g., that si = 1
then sj = 1 with probability 0.5 and sj = −1 with probability 0.5 leaving
〈sisj〉 = 0.5 · 1 + 0.5 · (−1) = 0. Hence

〈sisj〉 =

{

1 i, j in the same percolation cluster
0 otherwise.

(5)

(iii) For p < pc all clusters are finite. Since the clusters are not correlated, the
average magnetisation must be zero.
For p > pc, we can argue that all the finite clusters do not contribute
to the magnetisation as their magnetisation would average out to zero.
Hence, the magnetisation then becomes equal to P∞(p), the density of
the infinite cluster. In zero external field, the orientation of the spins in
the infinite cluster is either up + or down −.
For p = pc the argument is the same as for p > pc with the additional
information that the density of the infinite cluster P∞(p) is zero at p = pc

and hence there is no net magnetisation.
In summary

m0(p) = ±P∞(p) =

{

0 for p ≤ pc

6= 0 for p > pc.
(6)

(c) (i) P∞(p) is the probability for a spin to belong to the percolating infinite
cluster. As tanh(sH/kBT ) → 0 for H → 0±, the last term will vanish
and

m0(p) = lim
H→0±

m(p, H) = ±P∞(p)

consistent with the result of (b)(iii).

(ii) The susceptibility per spin in zero external field

χ(T, 0) =

(

∂m

∂H

)

T

∣

∣

∣

∣

H=0

.

Assuming H ≪ kBT we use the Taylor expansion tanh(sH/kBT ) ≈
sH/kBT +O ((sH/kBT )3). Since P∞(p) does not depend on the external
field, we find,

χ(T, 0) =

(

∂m

∂H

)

T

∣

∣

∣

∣

H=0

=

∞
∑

s=1

s2n(s, p)

kBT
= βχ(p) ∝ |p − pc|

−γ (7)

as the divergence of the second moment of the cluster number density
n(s, p) is characterized by the exponent γ when p → pc.
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(d) When p < pc, the magnetisation in zero external field m0(p) = 0. We are at
low temperature, so we may assume that within a cluster 〈sisj〉 = 1. In a
cluster of size s there are a total of s2 different pairs, so 1

kBT

∑

i

∑

j〈sisj〉 =
1

kBT
s2. We can calculate the average susceptibility per spin by summing over

all possible cluster sizes weighted by the cluster number density, that is,

χ(T, 0) =
∞
∑

s=1

(

1

kBT

∑

i

∑

j

〈sisj〉

)

n(s, p) =
1

kBT

∞
∑

s=1

s2n(s, p). (8)

3. (a) Landau theory for the Ising model.

(i) On each site ri, there is a spin variable si = ±1 that can take on only
two values: spin up (+1) or spin down (−1).

(ii) It is energetically favorable for neighbouring spins to be parallel. So,
J > 0 so that a pair of parallel spins where sisj = +1 has energy −J and
a pair of anti-parallel spins where sisj = −1 has energy +J .

(iii) The first sum runs over distinct nearest neighbour pairs (i.e., we assume
that the spin-spin interaction Jij fall off so rapidly that only nn interac-
tions are present). If z denotes the coordination number, then

∑

〈ij〉

1 =
z

2

N
∑

i=1

1 =
1

2
Nz, (9)

where the factor of 1/2 ensures that we are counting distinct nearest-
neighbour pairs only.

(b) See Figure 3.

0 1

-1

-0.5

0

0.5

1

T/Tc

m
0
(T

)

Figure 3: When T → 0, then m0(T ) → ±1. When T → T−
c , the magnetisation de-

creases sharply but continuously to zero at T = Tc. For all T ≥ Tc, the magnetisation
per spin in zero external field m0(T ) = 0.
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(c) See Figure 4.

-1 -0.5 0 0.5 1
m0(T )

f L
(m

;T
;0

)
T > Tc

T = Tc

T < Tc

Figure 4: The Landau free energy per spin fL(m; T ; 0) vs. the average magnetisation
per spin in zero external field m0(T ). The solid circles show the position of the
minima of the free energy of the corresponding graph. For T ≥ Tc, unique minimum
at m0(T ) = 0. For T < Tc, double minima at m0(T ) = ±m0 6= 0.

Minimise fL with respect to m:

(

∂f

∂m

)

T,H

= 0 ⇔ 2a2(T − Tc)m + 4a4m
3 − H = 0. (10)

In zero external field, we have

2m0(T )
[

a2(T − Tc) + 2a4m
2

0
(T )
]

= 0. (11)

For T ≥ Tc this implies m0(T ) = 0 because a4 > 0.

For T < Tc this implies m0(T ) = ± [a2(Tc − T )/2a4]
1/2 ∝ ± (Tc − T )1/2.

In summary

m0(T ) =

{

0 for T ≥ Tc

± [a2(Tc − T )/2a4]
1/2 for T → T−

c

∝

{

0 for T ≥ Tc

±(Tc − T )1/2 for T → T−
c .

(12)
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(d) See Figure 5.
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-0.5

0

0.5

1

m
(T

,H
)

H

T > Tc

T < Tc

Figure 5: Sketch of the magnetisation per spin m(T, H) versus the external field H
for two different temperatures T > Tc and T < Tc. For large external fields, the
magnetisation saturates to m = ±1 for both graphs. When H = 0: For T > Tc graph
is continuous and it crosses the point (0, 0) because m(T, 0) = 0. For T < Tc, the
graph have a discontinuous jump at H = 0 because lim

H→0±
m(T, H) = ±m(T, 0) 6= 0.

(e) (i) I have been quite ‘naughty’ posing you this question as it is tempting you
to make wrong conclusions in order to reach an almost (a factor of 2 will
be missing) correct answer. Of course, I would never do that in an exam
situation. However, it might be very instructive because it exposes two
types of wrong-doing (that are intimately linked) that are found quite
frequently in literature on the Ising model.

Case 1 – wrong mean-field theory:

First, we derive the result for non-interacting spins in an external field H
(Sec. 2.2 in notes). The total energy is

E{si} = −H
N
∑

i=1

si. (13)
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The partition function is

Z(T, H) =
∑

{si}

exp
(

−βE{si}

)

=
∑

{si}

exp

(

βH

N
∑

i=1

si

)

=
∑

{si}

N
∏

i=1

exp (βHsi) = (2 coshβH)N . (14)

The free energy per spin

f(T, H) = −kBT ln (2 cosh βH) , (15)

and hence, the magnetisation per spin is given by

m(T, H) = −

(

∂f

∂H

)

T

= kBT
2 sinh βH

2 cosh βH
β = tanhβH. (16)

The total energy of the Ising model in this version of the mean-field model:

E{si} = −J
∑

〈ij〉

sisj − H
N
∑

i=1

si

≈ −J
∑

〈ij〉

sim − H
N
∑

i=1

si

= −Jm
z

2

N
∑

i=1

si − H

N
∑

i=1

si each site i has
z

2
distinct nn

= −

(

Jm
6

2
+ H

) N
∑

i=1

si z = 6 in d = 3 cubic lattice

= − (3Jm + H)

N
∑

i=1

si

= −Heff

N
∑

i=1

si, (17)

where we have introduced an effective external field

Heff = 3Jm + H. (18)

So far nothing illegal has taken place. However, now the argument
(wrongly) states that using Eq. (16), we find that the magnetisation
must satisfy the equation

m(T, H) = tanh βHeff = tanh (β3Jm + βH) . (19)
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To see that this is indeed a conclusion that cannot be drawn, we need
to go through the second case that is often presented in the literature.

Case 2 - wrong mean-field theory:

We start with the mean-field energy

E{si} ≈ − (3Jm + H)

N
∑

i=1

si. (20)

The associated partition function is

Z =
∑

{si}

exp

(

(β3Jm + βH)
N
∑

i=1

si

)

=
∑

{si}

N
∏

i=1

exp [(β3Jm + βH) si]

= [2 cosh (β3Jm + βH)]N . (21)

The free energy per spin is

f = −
1

N
kBT ln

[

[2 cosh (β3Jm + βH)]N
]

= −kBT ln [2 cosh (β3Jm + βH)] . (22)

Hence, the magnetisation per spin is

m = −

(

∂f

∂H

)

T

= kBT
2 sinh(β3Jm + βH)

2 cosh(β3Jm + βH)

(

β3J

(

∂m

∂H

)

T

+ β

)

= tanh(β3Jm + βH)

(

3J

(

∂m

∂H

)

T

+ 1

)

. (23)

However it is common to use a dirty trick and (wrongly) briefly assume
that m is independent of H . In doing so, we arrive at the following
equation for determining m in the mean-field picture

m = −

(

∂f

∂H

)

T

= kBT
2 sinh(β3Jm + βH)

2 cosh(β3Jm + βH)

= tanh(β3Jm + βH). (24)
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This is in effect what is tacitly done in case 1 also. Indeed, Eq.(16) states

m(T, H) = kBT
2 sinh βH

2 cosh βH

(

∂βH

∂H

)

T

(25)

and substituting in this equation Heff = 3Jm+βH we arrive at the same
result.

Case 3 - correct mean-field theory:

Following the derivation in the notes (Sec. 2.5), we find that the correct
equation for determining m in the mean-field picture is, in fact

m = tanh(β6Jm + βH), (26)

that is, there is an extra factor of 2 in the contribution to the ‘internal
field’.

Also, cases 1 and 2 would also fail to yield an equation for the magneti-
sation m using the equation

(

∂f

∂m

)

T,H

= 0 (27)

(ii) Mean field theory result:

m = tanh(β6Jm + βH) = tanh [(6Jm + H) /(kBT )] . (28)

Uncorrelated spins in an effective field Heff = H + 6Jm. Each spin feels
the external field H . Also, each spin feels the average magnetisation m
of each of its 6 (d = 3 cubic lattice) neighbouring spins. In the exchange
interaction: −Jsisj this corresponds to an effective internal field of 6Jm.

As you can see from the discussion above, this interpretation is strictly
speaking, not scientifically sound but nevertheless frequently used in the
literature.
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Statistical Mechanics Answer Sheet 9

1. Scaling ansatz of free energy per spin and scaling relations. (RF Question)

(a) Consider the Ising model on a d-dimensional lattice in an external field H .

(i) The total energy for a system of N spins si = ±1 with constant nearest-
neighbour interactions J > 0 placed in a uniform external field H is

E{si} = −J
∑

〈ij〉

sisj − H
N
∑

i=1

si, (1)

where the notation 〈ij〉 restricts the sum to run over all distinct nearest-
neighbour pairs.

(ii) Let M{si} =
∑N

i=1 si denote the total magnetisation and 〈M〉 the average
total magnetisation. The order parameter for the Ising model is defined
as the magnetisation per spin

m(T, H) = lim
N→∞

〈M〉

N
. (2)

Consider the free energy F = 〈E〉−TS. The ratio of the average total en-
ergy, 〈E〉, to the temperature times entropy, TS, defines a dimensionless
scale J/(kBT ). A competition exists between the tendency to randomise
the orientation of spins for J ≪ kBT , and a tendency to align spins for
J ≫ kBT . In the former case, the free energy is minimised by maximising
the entropic term: the magnetisation is zero because the spins point up
and down randomly. In the latter case, the free energy is minimised by
minimising the total energy: the magnetisation is non-zero because the
spins tend to align. Since the entropy in the free energy is multiplied by
temperature, for sufficiently low temperatures, the minimisation of the
free energy is dominated by the minimisation of the total energy. There-
fore, at least qualitatively, there is a possibility of a phase transition from
a phase with zero magnetisation at relatively high temperatures, to a
phase with non-zero magnetisation at relatively low temperatures.
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We assume that the singular part of free energy per spin is a generalised homoge-
neous function,

f(t, h) = b−df(bytt, byhh) for t → 0±, h → 0, ∀ b > 0. (3)

(b) Below, we use the notation ∂f
∂t

= f ′
t and ∂2f

∂t2
= f ′′

tt and similar for partial
derivatives w.r.t. h.

(i) The critical exponent α associated with the specific heat in zero external
field characterises its divergence as t → 0 and is defined by

c(t, 0) ∝ |t|−α for t → 0. (4)

The specific heat is related to the free energy per spin:

c(t, h) ∝

(

∂2f

∂t2

)

∝ b2yt−df ′′
tt(b

ytt, byhh). (5)

Choosing b = |t|−1/yt and setting h = 0 we find

c(t, 0) ∝ |t|
−

2yt−d

yt f ′′
tt(±1, 0) for t → 0±, (6)

and since f ′′
tt(±1, 0) are just numbers, we identify

α =
2yt − d

yt
. (7)

(ii) The critical exponent β associated with the order parameter (magnetisa-
tion per spin) in zero external field characterises the pick up of the order
parameter as t → 0− and is defined by

m(t, 0) ∝ |t|β for t → 0−. (8)

The magnetisation per spin is related to the free energy per spin:

m(t, h) ∝ −

(

∂f

∂h

)

∝ byh−df ′
h(b

ytt, byhh). (9)

Choosing b = |t|−1/yt and setting h = 0 we find

m(t, 0) ∝ |t|
d−yh

yt f ′
h(−1, 0) for t → 0−, (10)

and since f ′
h(−1, 0) is just a number, we identify

β =
d − yh

yt

. (11)
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(iii) The critical exponent γ associated with the susceptibility in zero external
field characterises its divergence when t → 0 and is defined by

χ(t, 0) ∝ |t|−γ for t → 0. (12)

The susceptibility is related to the free energy per spin:

χ(t, h) ∝ −

(

∂2f

∂h2

)

∝ b2yh−df ′′
hh(b

ytt, byhh). (13)

Choosing b = |t|−1/yt and setting h = 0 we find

χ(t, 0) ∝ |t|
−

2yh−d

yt f ′′
hh(±1, 0) for t → 0 (14)

and since f ′′
hh(±1, 0) are just numbers, we identify

γ =
2yh − d

yt
. (15)

(iv) The critical exponent δ associated with the order parameter at the critical
temperature characterises how the magnetisation per spin vanishes for
small external fields and is defined by

m(0, h) ∝ sign(h)|h|1/δ for h → 0±. (16)

The magnetisation per spin is related to the free energy per spin:

m(t, h) ∝ −

(

∂f

∂h

)

∝ byh−df ′
h(b

ytt, byhh). (17)

Choosing b = |h|−1/yh and setting t = 0 we find

m(0, h) ∝ |h|
d−yh

yh f ′
h(0,±1) for h → 0 (18)

and since f ′
h(0,±1) are just numbers, we identify

δ =
yh

d − yh

. (19)

(v) We find

α + 2β + γ =
2yt − d + 2d − 2yh + 2yh − d

yt

= 2
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and

β(δ − 1) =
d − yh

yt

(

yh

d − yh
− 1

)

=
d − yh

yt

(

2yh − d

d − yh

)

=
2yh − d

yt

= γ.

2. One-dimensional Ising model with periodic boundary conditions (Exam 2007)

(a) The total energy for a system of N spins si = ±1 with constant nearest-
neighbour interactions J > 0 placed in a uniform external field H is

E{si} = −J
∑

〈ij〉

sisj − H

N
∑

i=1

si,

= −J

N
∑

i=1

sisi+1 − H

N
∑

i=1

si. (20)

The sum over all distinct nearest-neighbour pairs 〈ij〉 reduces to the sum over
all spins in d = 1 with sN+1 = s1.

(b) (i) At T = 0 all spins are aligned. Hence there are 2 microstates with all
spins pointing up or all spins pointing down.

(ii) When T → ∞ all spins are pointing up and down at random without any
correlations. Hence there are a total of 2N microstates.

(iii) The total energy E{si} = −J
∑N

i=1
sisi+1 in zero external field. At T = 0

all spins are aligned. At T = ∞ spins are pointing up and down at
random. Hence, the energy per spin

ǫ(T, 0) =
〈E〉

N
=

{

−J at T = 0,

0 for T → ∞.
(21)

(iv) The magnetisation per spin

m(T, 0) =
〈M〉

N
=

{

±1 at T = 0,

0 for T → ∞
(22)

since at T = 0 all spins are aligned while at T = ∞ spins are pointing up
and down at random.
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(v) The entropy S = kB ln Ω where Ω is the number of microstates. Hence

S(T, 0) =

{

kB ln 2 for T = 0,

NkB ln 2 for T → ∞.
(23)

You may also arrive at the same result using

S(T, 0) = −kB

∑

{si}

p{si} ln p{si}, (24)

where p{si} is given by the Boltzmann distribution

p{si} =
exp

(

−βE{si}

)

∑

{si}
exp

(

−βE{si}

) , (25)

with β = 1/(kBT ) the ‘inverse temperature’.

For T → 0, only the two ground states will have a non-zero probability
and p{si=+1∀i} = p{si=−1∀i} = 1/2. Hence

S(0, 0) = −kB

∑

{si}

p{si} ln p{si} = −kB

(

1

2
ln

1

2
+

1

2
ln

1

2

)

= kB ln 2. (26)

For T → ∞, β → 0 and all 2N microstates have equal probability with
p{si} = 2−N . Hence

S(∞, 0) = −kB

∑

{si}

p{si} ln p{si} = −kB2N2−N ln 2−N = NkB ln 2. (27)

(vi) The total free energy 〈F 〉 = 〈E〉 − TS. Hence, using the results of (iii)
and (v) we find that the free energy per spin

f(T, 0) =
F

N
=

{

−J − 1
N

kBT ln 2 for T = 0,

−kBT ln 2 for T → ∞.
(28)

(c) The magnetisation per spin

m(T, H) =
sinh βH

√

sinh2 βH + exp(−4βJ)
, (29)

where β = 1/(kBT ) and J > 0 the coupling constant. We note that sinh βH →
0 for H → 0±.

When T > 0, the term exp(−4βJ) is finite and hence limH→0 m(T, H) = 0.

When T = 0, the term exp(−4βJ) is zero and hence limH→0± m(0, H) = ±1.

Hence there is no phase-transition in the Ising model in zero external field at
any finite temperature.
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3. One-dimensional Ising model with periodic boundary conditions (Exam 2010)

(a) The partition function for the d = 1 Ising model:

Zring =
∑

{si}

e−βE{si}

=
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

eβJs1s2eβJs2s3 . . . eβJsN−1sN eβJsNs1 (30)

where β = 1/(kBT ) with kB the Boltzmann constant and T the temperature.

(b) Using the notation of the transfer matrix, we find

Zring =
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

eβJs1s2eβJs2s3 . . . eβJsN−1sN eβJsNs1

=
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

Ts1s2
Ts2s3

. . . TsN−1sN
TsNs1

=
∑

s1=±1

∑

s3=±1

. . .
∑

sN−1=±1

(

∑

s2=±1

Ts1s2
Ts2s3

)

. . .

(

∑

sN=±1

TsN−1sN
TsNs1

)

=
∑

s1=±1

∑

s3=±1

. . .
∑

sN−1=±1

T 2
s1s3

T 2
s3s5

. . . T 2
sN−3sN−1

T 2
sN−1s1

=
∑

s1=±1

∑

s5=±1

. . .
∑

sN−3=±1

T 4
s1s5

T 4
s5s9

. . . T 4
sN−3s1

=
∑

s1=±1

TN
s1s1

= Tr
(

TN
)

, (31)

where we use the (general) fact of matrix multiplication
∑

sk

Tsisk
Tsksj

= T 2
sisj

. (32)

(c) The transfer matrix in zero external field (H = 0) is

T =

(

T+1+1 T+1−1

T−1+1 T−1−1

)

=

(

eβJ e−βJ

e−βJ eβJ

)

. (33)

The eigenvalues λ± of T are the solutions to the characteristic equation

det(T − λI) = 0. (34)

The determinant

det(T − λI) =

∣

∣

∣

∣

eβJ − λ e−βJ

e−βJ eβJ − λ

∣

∣

∣

∣

= λ2 − 2eβJλ + e2βJ − e−2βJ (35)
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so the solutions to the characteristic Equation (34) are

λ± =
2eβJ ±

√

4e2βJ − 4[e2βJ − e−2βJ ]

2
= eβJ ± e−βJ

=

{

2 cosh βJ,

2 sinh βJ.
(36)

Hence, the partition function

Zring = λN
+ + λN

−

= (2 cosh βJ)N + (2 sinh βJ)N

= (2 cosh βJ)N [1 + tanhN βJ
]

. (37)

(d) In the high-temperature limit
βJ ≪ 1. (38)

Taylor expansion to first order yields cosh βJ ≈ 1 and tanh βJ ≈ βJ so that
the partition function

Zring = (2 coshβJ)N [1 + tanhN βJ
]

≈ 2N
[

1 + (βJ)N
]

≈ 2N (39)

because (βJ)N ≪ 1. Hence, the total free energy of the system

Fring = −kBT ln Zring

≈ −kBT ln 2N

= −TNkB ln 2

= −TS, (40)

where the entropy is given by

S = kB ln 2N , (41)

and also given by

S = −kB

∑

{si}

p{si} ln p{si}, (42)

with

lim
T→∞

p{si} = lim
T→∞

e−βE{si}

∑

{si}
e−βE{si}

=
1

2N
. (43)
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The N spins are effectively free spins because the thermal energy kBT is
much larger than the energy 2J it costs to one flip from a ↑↑ to a ↑↓ local
configuration. Therefore the free energy is just entropic with −TkB ln 2 per
spin.

(e) (i) Assume extremely low temperature with βJ ≫ 1. Using that

2 cosh x = ex + e−x ≈ ex for x ≫ 1, (44a)

2 sinh x = ex − e−x ≈ ex for x ≫ 1, (44b)

we find that the partition function

Zring = (2 cosh βJ)N + (2 sinh βJ)N

≈ eNβJ + eNβJ

= 2eNβJ . (45)

Hence the total free energy

Fring = −kBT ln Zring

≈ −kBTNβJ − kBT ln 2

= −NJ − kBT ln 2. (46)

(ii) Recall that F = 〈E〉 − TS. Hence, we identify the first term, −NJ as
the energy of the ground state where all spins are aligned at T = 0.
The second term, −kBT ln 2, tells us that the entropy is kB ln 2 at low
temperatures. This is because there are two degenerate ground states, all
spins pointing up or all spins pointing down.

4. Ising model in d > 1 (Exam 2006)

(a) (i) The total energy for a system of N spins si = ±1 with constant nearest-
neighbour interactions J > 0 placed in a uniform external field H is

E{si} = −J
∑

〈ij〉

sisj − H

N
∑

i=1

si, (47)

where the notation 〈ij〉 restricts the sum to run over all distinct nearest-
neighbour pairs.

(ii) Spins interact only with their nearest neighbours. The interaction strength
is assumed to be a constant. The spins can only take one of two values
si = ±1. Finally, the external field H is constant.

(b) (i) The free energy per spin

f(T, H) = −
1

N
kBT ln Z. (48)
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(ii) The average magnetisation per spin

m(T, H) =

〈

1

N

N
∑

i=1

si

〉

. (49)

The statistical mechanical definition of the free energy yields

−

(

∂f

∂H

)

T

=
1

N
kBT

∂

∂H
ln Z

=
1

N
kBT

1

Z

∂

∂H
Z

=
1

N
kBT

1

Z

∂

∂H

∑

{si}

exp(−βE{si})

=
1

Z

∑

{si}

exp(−βE{si})
1

N

N
∑

i=1

si

=
1

Z

∑

{si}

exp(−βE{si})m{si} (50)

which is indeed the average magnetisation per spin.

(c) For T ≥ Tc, the spins are equally likely to be pointing up and down on average
so the magnetisation per spin is zero. The magnetisation picks up abruptly
at T = Tc and for T < Tc a finite fraction of the spins are aligned. At T = 0,
all spins point in the same direction. Hence, m(0, 0) = ±1.

(d) (i) The average magnetisation per spin is

m(T, H) = −

(

∂f

∂H

)

T

. (51)

Hence, for fixed temperature, T , the magnetisation per spin is the neg-
ative slope of the free energy per spin as a function of the external field
H .

(ii) Clearly T > Tc has zero slope at H = 0. For T < Tc the slope is finite
and take the same numerical value for H → 0± but with different sign.
At T = Tc, the slope is also zero but the second derivative (susceptibility)
diverges, that is, the rate of change in the slope is infinite.
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T/Tc

m0(T ) = lim
H→0±

m(T, H)

0

1

−1

10

Figure 1: A sketch of the magnetisation per spin m0(T ) = lim
H→0±

m(T, H) versus the

relative temperature T/Tc for the Ising model.
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Problem sheet issued: Tuesday 8th October 2013

Solutions available from: Wednesday 16th October 2013

Statistical Mechanics Answer Sheet 1

Regular Fractals

1. Sierpinski carpet
We need to deduce how the area A scales with the system size. Each square of
side L contains 8 smaller squares of side L/3 ⇒ A(L) = 8A(L/3) = 8nA(L/3n).
Set b = 3n so that n = ln b/ ln 3. Substitute into 8n and rearrange to obtain

A(L) = bln 8/ ln 3A(L/b) .

This is an implicit equation for A. To obtain an explicit equation, set L/b = a for
some small length scale a. Then, we can see that A(L) = (L/a)dfA(a). In other
words, the area obeys a power law: A(L) ∼ Ldf with df = ln 8/ ln 3 = log3 8.

Alternatively, you can suggest the power law A ∼ Ldf as an ansatz and substi-
tute into the implicit scaling form above to give: Ldf = bln 8/ ln 3(L/b)df ⇒ df =
ln 8/ ln 3.

2. Koch curve

(a) The length of the perimeter P is just like the area in the previous problem.
Here, at each iteration, the length of a straight segment is reduced by a factor
of 3, but the number of segments has increased by a factor of 4. Following
the same procedure as above,

P (L) = 4nP (L/3n)⇒ P (L) = bln 4/ ln 3P (L/b),

we can identify df = 2 ln 2/ ln 3 ' 1.26.

(b) Qualitatively, the perimeter is very large because the curve wiggles at all
length scales.
Suppose we start with a triangle of side L and stop constructing the curve
after n steps, when the sides are of length a. Then, setting L/b = a gives
P (L) = (L/a)dfP (a). But the length of the portion of side a is simply a if we
stopped the iteration at that scale. So

P (L) = (L/a)dfa = Ldfa1−df .

1



Note that df > 1 and so P (L) ∝ 1/a0.26 scales as a negative power of a. This
means that the perimeter diverges if we continue our construction to smaller
and smaller scales (n→∞, a→ 0).

(c) Examine first the first iteration n = 0 → 1. Each kink inserted adds two
edges of length 1/3 of the original edge. This means that the extra enclosed
area is a triangle with 1/9 of the area of the original. There are 3 such edges
and so: Σ1 = Σ0 + 3Σ0/9 = Σ0 + Σ0/3. Note that the resulting object has 4
times as many edges as the original.
Now consider the n’th iteration, which generates Σn from Σn−1. Each kink
adds a triangle with 1/9 the area of the previous generation of added triangles,
i.e., 1/9n of the original Σ0. The number of kinks to add is the number of edges
at the (n− 1)-th generation. Since each generation multiplies the number of
edges by 4, the number of edges is 3×4n−1. Therefore, the extra area enclosed
is (Σ0/9

n)× (3× 4n−1), i.e.,

Σn = Σn−1 +
(

4

9

)n−1 Σ0

3
.

This is a recurrence relation which starts with a given Σ0 =
√

3L2/4 and
generates the successive enclosed areas Σn at later generations. Each succes-
sive contribution to the area is a factor of 4/9 smaller than the previous one,
giving a geometric series that we can sum analytically:

ΣN = Σ0 +
Σ0

3

[
1 +

4

9
+
(

4

9

)2

+ . . .
(

4

9

)N−1]

⇒ lim
N→∞

ΣN = Σ0

[
1 +

1

3

∞∑
n=0

(
4

9

)n]
= Σ0

[
1 +

1

3
· 1

1− (4/9)

]
=

8

5
Σ0.

Random Fractals

3. 1D random walk

(a) The distribution is even in x. The walker is equally likely to go left or right
at any step, so 〈X〉 = 0.

(b) The RMS displacment is defined as (〈X2〉 − 〈X〉2)1/2. In this case, it is just
〈X2〉1/2. For uncorrelated steps, the variances add up. In this case, all the
steps obey the same distribution and so have the same variance:

〈X2〉 =
N∑
i=1

〈x2i 〉 = N〈x2i 〉 .

We now have to work out 〈x2i 〉 =
∫ ∞
−∞

x2p(x) dx. The distribution is propor-

tional to the exponential and must be normalised, so it can be written in the

2



form:

p(x) =
1

A
e−|x|/a with A =

∫ ∞
−∞

e−|x|/a dx = 2
∫ ∞
0
e−x/a dx = 2a.

This gives

〈x2〉 =
1

A

∫ ∞
−∞

x2e−|x|/a dx =
1

2a
· 4a3 = 2a2 .

Hence, since 〈X2〉 = N × 2a2, the RMS displacement is
√

2Na.

(c) The central limit theorem states that the sum X of N independent and iden-
tically distributed random variables xi obeys a probability distribution that
converges, in the limit as N → ∞, to a Normal distribution with mean Nµ
and variance Nσ2, where µ and σ2 are the mean and variance of the individual
terms xi.
The Normal distribution for a variable z with mean µ and variance σ2 is

N (z − µ, σ) =
1√

2πσ2
e−(z−µ)

2/2σ2

.

Using the mean and variance we know from the previous parts of this question,
we replace µ by zero and σ2 by N · 2a2 to obtain

P (X) =
1√

4πNa2
e−X

2/4Na2 .

4. Ideal polymer

(a) (i) The distribution p(x, y, z) can be factorized into independent distribu-
tions for x, y and z separately: p(x, y, z) = f(x)f(y)f(z) with f(x) =
e−|x|/a/2a. It follows that each component performs an independent one-
dimensional random walk as in the previous question. The 1D normalisa-
tion factor 1/2a was also derived in Q3. The normalised 3D probability
distribution is

p(x, y, z) = A−1e−(|x|+|y|+|z|)/a,

where A = (2a)3.
Borrowing the 1D results, we find

〈R〉 = (〈X〉, 〈Y 〉, 〈Z〉) = (0, 0, 0),

〈R2〉 = 〈X2 + Y 2 + Z2〉 = 〈X2〉+ 〈Y 2〉+ 〈Z2〉 = 3× (2Na2) = 6Na2.

Note that this argument fails if the three components are not indepen-
dent. It would not work, for instance, for a spherically symmetric dis-
tribution of the form p(x, y, z) ∝ exp(−

√
x2 + y2 + z2/a) = exp(−|r|/a),

which does not factorise.
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(ii) Using the central limit theorem (as in the previous question):

P (R) = P (X)P (Y )P (Z) =
1

(4πNa2)3/2
e−X

2/4Na2e−Z
2/4Na2e−Z

2/4Na2

=
1

(4πNa2)3/2
exp

(
− R2

4Na2

)
.

(iii) Normalisation requires
∫
P (R) d3R = 1, so P (R) must have dimensions of

1/(length)3. The normalisation factor in P (R) is indeed∝ 1/a3. Also, the
exponent in the Gaussian factor must be dimensionless, i.e., R2 appears
with the only length scale in the problem as R2/a2.

(b) (i) The number of ways W (R) to arrange the polymer so that its end-to-
end displacement is R is proportional to the probability density P (R):
W (R) = AP (R) for some proportionality constant A. Therefore, S(R) =
kB lnW (R) = kB(lnP (R) + lnA). Using the probability density

P (R) =
1

(4πNa2)3/2
exp

(
− R2

4Na2

)

from the problem sheet, we obtain

S(R) = −kBR2/4Na2 + kB lnA .

(ii) Configurations with different end-to-end distances now have different in-
ternal energies U . If the end experiences a force f , this is equivalent to
a potential energy for the end monomer of U(R) = −f ·R (+ irrelevant
constant), i.e., the end wants to roll down a potential hill with gradient
−f .
We must include the Boltzmann factor e−U(R)/kBT to weight these differ-
ent configurations, so

P (R) ∝ exp

(
− R2

4Na2

)
× e−U(R)/kBT

∝ exp

(
− R2

4Na2
+

1

kBT
f ·R

)
.

(iii) I will give two equivalent derivations. The normalized probability distri-
bution is

P (R) =
1

Z
exp

(
− R2

4Na2
+

1

kBT
f ·R

)
.

If we complete the square in the exponent,

R2

4Na2
− 1

kBT
f ·R =

1

4Na2

(
R− 2Na2

kBT
f

)2

− Na2

k2BT
2
f 2,

4



we see that

P (R) ∝ exp

− 1

4Na2

(
R− 2Na2

kBT
f

)2
× (const indep of R)

is again a Gaussian with the same variance but mean shifted to

〈R〉 =
2Na2

kBT
f =

〈R2〉0
3kBT

f ,

where I have used 〈R2〉0 = 6Na2 as computed above.

An alternative approach is to consider the free energy F = U − TS.
At equilibrium this is minimised at constant temperature T , so dF =
dU − TdS = 0 for any small change dR in the end-to-end displacement.
Using the expression for the entropy from part (b)(i):

dF = −f · dR− T × (−2R · dR)/4Na2 = (−f + kBTR/2Na
2) · dR,

where I have used d(R2) = 2R · dR. (You can see this explicitly by
writing out R2 in terms of the coordinates, X, Y and Z and working out
how it changes due to dX, dY and dZ.)
At thermal equilibrium dF = 0, so the equilibrium value of 〈R〉 is given
by f = (kBT/2Na

2)〈R〉. This agrees with the result derived above.

(iv) The rubber band consists of cross-linked polymer chains. Each strand
of polymer obeys Hooke’s law as above. Note that the stretching of the
chain is proportional to 1/T and so decreases with increasing tempera-
ture. Therefore, the rubber band contracts when heated and the weight
rises. This should be contrasted with a metal rod which expands on heat-
ing.

The origin of this tension in the rubber band comes from the term TdS
in dF . In other words, it is completely entropic. When we stretch the
polymer chain, the random walk becomes constrained compared to the
case with no applied force. Although the stretching lowers the mechanical
energy of the system, it is costly in entropy. From the expression for dF ,
we see that the entropic contribution to the free energy is more important
at higher temperatures. Therefore, the polymer chain is less willing to
pay the entropic cost of stretching and the amount of stretching for a
given applied force is reduced.
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Problem sheet issued: Tuesday 15th October 2013

Solutions available from: Wednesday 23rd October 2013

Statistical Mechanics Answer Sheet 2

Percolation in One Dimension

1. Scaling form of order parameter

(a) If s ≤ L− 2, an s-cluster must be bounded by two empty sites; if s = L− 1,
there is only one empty site in the system; if s = L, all sites are occupied.
Thus

n(s, p) =


ps(1− p)2 for s ≤ L− 2,
pL−1(1− p) for s = L− 1,
pL for s = L.

(b) A cluster with size s = L is percolating and becomes infinite in size as L→∞.
Such a cluster ought not to be regarded as finite. Therefore,

∑L−1
s=1 sn(s, p)

represents the probability that a site belongs to a finite cluster.

(c) It is obvious that the probability of an arbitrary site belonging to the spanning
(infinite) cluster is P∞(p, L) = pL, but we can double check this by finding
the probability that the site does not belong to a finite cluster:

P∞(p, L) = p−
L−1∑
s=1

sn(s, p)

= p− (L− 1)pL−1(1− p)−
L−2∑
s=1

sps(1− p)2

= p− (L− 1)pL−1(1− p)− (1− p)2
(
p
d

dp

)(L−2∑
s=1

ps

)

= p− (L− 1)pL−1(1− p)− (1− p)2
(
p
d

dp

)(
p− pL−1

1− p

)
= p− (L− 1)pL−1(1− p)− (1− p)2p(1− p)(1− (L− 1)pL−2) + (p− pL−1)

(1− p)2

= pL .

1



(d) (i) We are given that ξ(p) = −1/ ln p, from which it follows that ln p = −1/ξ
and hence that p = exp(−1/ξ). Since P∞(p, L) = pL, we obtain

P∞(ξ, L) = pL =

[
exp

(
−1

ξ

)]L
= exp

(
−L
ξ

)
.

(ii) The expression above is already in scaling form,

P∞(ξ, L) = ξ−β/νP(L/ξ) ,

with β/ν = 0 and P(x) = exp(−x).

When x� 1, P(x) ≈ 1. When x� 1, P(x) decays rapidly to zero.

2. Moments and moment ratio of the cluster number density

(a) Mk(p) =
∞∑
s=1

skn(s, p)

=
∞∑
s=1

sk(1− p)2ps

= (1− p)2
∞∑
s=1

skps

= (1− p)2
∞∑
s=1

sk exp(s ln p)

= (1− p)2
∞∑
s=1

sk exp(−s/sξ) (where sξ = −1/ ln p)

= (1− p)2skξ
∞∑
s=1

(s/sξ)
k exp(−s/sξ) .

Since sξ → ∞ as p → p−c = 1−, the values of s/sξ hardly change from term
to term in the summation. Hence we can approximate the summation by an
integral:

Mk(p) = (1− p)2skξ
∞∑
s=1

(s/sξ)
k exp(−s/sξ) ∆s (where ∆s = 1)

≈ (1− p)2skξ
∫ ∞
1

(s/sξ)
k exp(−s/sξ)ds

= (1− p)2sk+1
ξ

∫ ∞
1/sξ

uk exp(−u)du (where u = s/sξ) .

This is the required result.
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(b) Re-expressing the result derived in (a) in terms of p gives

Mk(p) = (1− p)2
(
−1

ln p

)k+1 ∫ ∞
− ln p

uk exp(−u)du.

As p → p−c = 1−, the lower limit tends to zero and the integral is easily
evaluated by parts (or looked up in a table — it is the definition of the
Gamma function). The result is

Mk(p) = (1− p)2
(
−1

ln p

)k+1

k!

≈ k!(1− p)1−k as p→ p−c = 1− ,

where I have used the approximation ln p = ln[1 − (1 − p)] ≈ −(1 − p) valid
as p→ pc = 1−. This is in the form required, so we identify

Γk = k! and γk = k − 1 .

(c) The result above tells us that M1 → 1!(1− p)0 = 1 as p→ p−c = 1−, which is
consistent with the equation

∑∞
s=1 sn(s, p) = p discussed in the course notes.

Hence Γ1 = 1 and γ1 = 0. The moment ratio becomes

gk =
MkM

k−2
1

Mk−1
2

(k ≥ 2)

=
Γk(1− p)1−kΓk−21 [(1− p)0]k−2

Γk−12 [(1− p)−1]k−1

=
ΓkΓ

k−2
1

Γk−12

=
k!

(2!)k−1
as p→ p−c = 1− .

3. Site-bond percolation in d = 1 (Rapid Feedback question)

(a) If there is a percolating (infinite) cluster, no sites or bonds can be empty.
Hence (pc, qc) = (1, 1).

(b) An s-cluster has s consecutive sites occupied, each with probability p, and
s−1 consecutive bonds occupied, each with probability q. At each end of the
s-cluster, either the site or the bond or both must be empty. Since pq is the
probability for both the site and the bond at one end to be occupied, (1−pq)2
is the probability that a cluster does not continue at either end. Therefore

n(s, p, q) = psqs−1(1− pq)2 .
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(c) First let us confirm that
∑∞

s=1 sn(s, p, q) = p:

∞∑
s=1

sn(s, p, q) =
∞∑
s=1

spsqs−1(1− pq)2

=
(1− pq)2

q

∞∑
s=1

s(pq)s

=
(1− pq)2

q

(
pq

d

d(pq)

)( ∞∑
s=1

(pq)s

)

= p(1− pq)2 d

d(pq)

(
pq

1− pq

)
= p .

Similarly

∞∑
s=1

s2n(s, p, q) =
∞∑
s=1

s2p2qs−1(1− pq)2

=
1

q
(1− pq)2

∞∑
s=1

s2(pq)s

=
1

q
(1− pq)2

(
pq

d

d(pq)

)2 ∞∑
s=1

(pq)s

=
1

q
(1− pq)2

(
pq

d

d(pq)

)2(
pq

1− pq

)
= p

1 + pq

1− pq
.

Hence

χ(p, q) =

∑∞
s=1 s

2n(s, p, q)∑∞
s=1 sn(s, p, q)

=
1 + pq

1− pq
.

This result is identical to that for site percolation if we identify the occupa-
tion probability with pq. That is, the results for the two different models are
equivalent if we if we consider an adjacent site-bond pair in the site-bond per-
colation problem as equivalent to a single site in the site percolation problem.
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Problem sheet issued: Tuesday 22nd October 2013

Solutions available from: Wednesday 30th October 2013

Statistical Mechanics Answer Sheet 3

Site Percolation on a Bethe Lattice

1. Correlation function

(a) Site i is already occupied by the definition of the correlation function. All the
sites from i to j must also be occupied. There are lij such sites, excluding i
but including j. Each site is occupied independently with probability p and
so the joint probability that all these lij sites are occupied is plij .

(b) The mean cluster size can be calculated by adding up the average number of
occupied sites belonging to the same cluster as site i. (This uses the fact that
the mean of a sum of independent random variables is the sum of the means
of each variable.) But the average contribution from site j is the probability
g(i, j) that this site belongs to the same cluster as site i. So, the sum of the
contributions from each site j on the lattice is the sum of g(i, j) over all j.
Notice that all sites are equivalent on the Bethe lattice, so the answer does
not depend on the starting site i.

(c) Using the expression for g(i, j) gives the equation χ(p) =
∑

j p
lij . To evaluate

this summation, group together the sites at every distance l = 0, 1, 2, 3, . . .
from site i. At l = 0 is the site i itself. We know that this is already occupied,
so it contributes g(0, 0) = 1 to the mean cluster size. There are z neighbours
at distance l = 1, contributing z × p1. There are z(z − 1) neighbours at
distance l = 2, contributing z(z − 1) × p2. In general, for l > 0, there are
z(z − 1)l−1 sites at distance l, contributing z(z − 1)l−1pl. Therefore,

χ(p) = 1 +
∞∑
l=1

z(z − 1)l−1pl = 1 + zp
∞∑
l=1

[p(z − 1)]l−1 = 1 + zp
∞∑
l=0

[p(z − 1)]l.

The geometric series on the right-hand side of this equation converges provided
p(z−1) < 1. We can then use the well-known formula for the sum of an infinite
geometric series,

∑∞
l=0 x

l = (1− x)−1 for |x| < 1, to obtain

χ(p) = 1 +
zp

1− p(z − 1)
=

1 + p

1− p(z − 1)
.

1



(d) χ(p) diverges as p(z−1)→ 1− (which is why the geometric series is restricted
to p(z − 1) < 1). Therefore, an infinite cluster stretching to infinity from site
i can be found for p > pc = 1/(z − 1).

2. Order parameter

(a) Choose an occupied site as the root of the Bethe lattice and trace out the
cluster to which it belongs. Assume this cluster survives at least until level l,
where it has t occupied “perimeter” or “surface” sites. Since every perimeter
site has z− 1 neighbours at level l+ 1, the expected number of occupied sites
at level l + 1 is t(z − 1)p. If t(z − 1)p > t, the expected number of occupied
sites on the perimeter grows as l increases. Any cluster that survives until
some high level l with a lot of occupied perimeter sites (and some clusters will
always manage this, purely by chance) is then very likely to grow in strength
as l increases and thus to percolate to infinity. The percolation threshold is
given by t(z − 1)p = t or, equivalently, p = 1/(z − 1).

(b) For site A to be part of the infinite percolating cluster it must be occupied
(which occurs with probability p) and at least one of the z branches emerging
from it must reach to infinity. Since Qz is the probability that none of the z
branches is connected to infinity, the probability that at least one is connected
to infinity is 1−Qz. Thus

P∞(p) = p [1− (Q(p))z] .

(c) We need each branch to be statistically independent. This means that each
branch must contain a distinct set of sites from the other branches. This is
only possible if two branches never meet again, i.e., if there are no loops on
the lattice. This is not the case for a square lattice.

(d) Consider a given occupied site, which we take to be the root of the Bethe
lattice (l = 0), and a given neighbour at level l = 1. By definition, the
probability that the neighbour is not the first site on a branch that links the
l = 0 site to infinity is Q. There are two ways that the branch starting on a
specific l = 1 neighbour can fail to link to infinity. Either the l = 1 site itself
is unoccupied (probability (1− p)), or the l = 1 site is occupied (probability
p) but all of its (z − 1) neighbours at level l = 2 fail to connect to infinity
(probability Qz−1). Hence

Q = (1− p) + pQz−1.

Rearranging gives 1−Q = p(1−Qz−1).

(e) Q = 1 is obviously a solution. Other solutions should satisfy (1−Qz−1)/(1−
Q) = 1/p. As for any polynomial equation, we should try to factorize the
polynomials. Since Q = 1 is a solution, we expect that the equation contains

2



a factor of 1−Q. Recall that: 1−xm = (1−x)(1 +x+x2 + . . .+xm−1). [Put
another way, (1−xm)/(1−x) is the formula for the sum of a finite geometric
series with first term 1 and ratio x.] Putting m = z − 1 gives the necessary
factorization in our case.

(f) For a continuous phase transition, the order parameter goes continuously to
zero as the critical point is approached. So, we expect P∞ � 1, and therefore
Q ' 1, as p approaches the percolation threshold from above.

(g) We need to solve the equation 1 + Q + . . . + Qz−1 = 1/p. Since Q → 1−

as p → pc, we can write Q as Q = 1 − δQ and perform a Taylor expansion
around Q = 1, assuming that δQ� 1. Therefore,

1

p
=

z−2∑
m=0

Qm =
z−2∑
m=0

(1− δQ)m

'
z−2∑
m=0

(1−mδQ) using the Taylor/binomial expansion

=

(
z−2∑
m=0

1

)
− δQ

(
z−2∑
m=1

m

)
= (z − 1)− 1

2
(z − 1)(z − 2)δQ.

To reach the last expression, I have used the arithmetic sum 1 + 2 + . . .+n =
n(n+ 1)/2 with n = z − 2.
We now have a linear equation in δQ which can be solved easily to give

δQ =
2

z − 2

(
1− 1

p(z − 1)

)
=

2

z − 2

(
1− pc

p

)
.

We can now obtain P∞ from: P∞ = p(1−Qz). This gives

P∞ = p [1− (1− δQ)z] ' p [1− (1− zδQ)] = pz δQ =
2z

z − 2
(p− pc).

(h) The z−2 roots are solutions of the equation f(Q) = 1+Q+ . . .+Qz−2 = 1/p.
Examine the function f(Q) in the domain 0 ≤ Q ≤ 1. Since all the coeffi-
cients in the polynomial f(Q) are positive (all +1), this function increases
monotonically (because df/dQ > 0 for Q > 0) for all positive Q, starting at
f(0) = 1 and increasing indefinitely to infinity as Q → ∞. See the figure
overleaf. Therefore, f(Q) will be equal to the value of 1/p (which is greater
than 1) once and once only for some Q > 0.

Note that f(Q) will reach 1/p in the range 0 ≤ Q < 1 only if p > 1/(z −
1). Otherwise, for p ≤ 1/(z − 1), we must choose the other solution: Q =
1 corresponding to no percolation. In other words, this tells us that the
percolation threshold is pc = 1/(z − 1).
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Problem sheet issued: Tuesday 29th October 2013

Solutions available from: Wednesday 6th November 2013

Statistical Mechanics Answer Sheet 4

Questions from 2011 Exam

1. (a) (i) As p → pc, the mean cluster size χ(p) is expected to diverge. Hence
pc = 1/(z − 1).

(ii) Since pc = 1/(z − 1),

χ(p) =
1 + p

1− (z − 1)p
=
pc(1 + p)

pc − p
.

Hence χ(p) ∼ (pc − p)−γ with γ = 1.

(b) (i) Start by noting that

N(l, p) =
z

z − 1
[(z − 1)p]l =

z

z − 1
el ln[(z−1)p].

Since (z − 1)p < 1, the argument of the logarithm is less than one and
the logarithm is negative. Hence

N(l, p) =
z

z − 1
e−l/lξ(p) ∼ e−l/lξ(p) where lξ(p) =

1

| ln[(z − 1)p]|
.

(ii) As p→ p−c , ξ(p) is expected to diverge. From the formula derived in (b)(i)
we see that lξ(p) diverges when (z−1)p tends to 1 and the logarithm in the
denominator tends to zero. This tells us that pc = 1/(z−1) in agreement
with the result of part (a)(i).

(iii) Setting p = pc(1− δ) = (1− δ)/(z − 1) gives

lξ(p) =
1

| ln[(z − 1)p]|
=

1

| ln[1− δ]|

In the limit as p→ p−c , δ → 0+, so it makes sense to expand the logarithm
as a power series in the small quantity δ:

ln(1− δ) = −δ − δ2/2− δ3/3− . . . .

1



Substituting this expansion into the formula for lξ gives

lξ(p) =
1

δ + δ2/2 + . . .
∼ 1

δ
=

pc
pc − p

.

Thus lξ(p) ∼ 1/(pc − p)ν with ν = 1 as p→ p−c .

(c) (i) χ is the expected number of occupied sites in the same cluster as a ran-
domly chosen occupied site, which we can always take as the l = 0 site
at the root of the Bethe lattice. Hence

χ(p) = 1 (for the site at l = 0)

+ expected numbers of sites in the same cluster at l = 1, 2, . . ..

= 1 +
∞∑
l=1

N(l, p).

(ii) Use the formula

χ(p) = 1 +
∞∑
l=1

N(l, p)

with N(l, p) = z
z−1 [(z − 1)p]l. This gives

χ(p) = 1 +
z

z − 1

∞∑
l=1

[(z − 1)p]l

= 1 +
z

z − 1
× (z − 1)p

1− (z − 1)p
(sum of infinite geometric series)

= 1 +
zp

1− (z − 1)p

=
1− (z − 1)p+ zp

1− (z − 1)p

=
1 + p

1− (z − 1)p
as required.
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2. (a) (i) sξ diverges at p = pc. Since G(0) is a non-zero constant, we see that
n(s, pc) ∼ s−τ . (For the sketch see Fig. 1 below.) This means that the
system is scale invariant or fractal at pc.

(ii) The quantity sξ(p) is the characteristic cluster size. It is exponentially
unlikely to find clusters much larger than sξ.
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Figure 1: Log-log plot of n(s, p) as a function of s for several values of p.

(b) n(s, p) is by definition the density of clusters containing s sites.
Hence sn(s, p) is the density of sites belonging to clusters containing s sites.
Hence

∑∞
s=1 sn(s, p) is the density of sites belonging to clusters of any size

from s = 1 to s =∞.
Since all sites belong to clusters of one of these sizes, we deduce that

∑∞
s=1 sn(s, p)

is the total density of occupied sites, otherwise known as p:

∞∑
s=1

sn(s, p) = p.

(c) (i) χ(p) ∼
∞∑
s=1

s2n(s, p)

∼
∞∑
s=1

s2−τG(s/sξ) (using scaling form valid near transition)

= s2−τξ

∞∑
s=1

(
s

sξ

)2−τ

G(s/sξ) ∆s
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where, by definition, ∆s ≡ 1. In the limit as p → p−c , sξ → ∞ and the
values of the summand change less and less as s changes by ±1. We can
therefore approximate the sum as an integral:

χ(p) ∼ s2−τξ

∫ ∞
1

(
s

sξ

)2−τ

G(s/sξ) ds

= s3−τξ

∫ ∞
1/sξ

u2−τG(u) du, where u = s/sξ.

(ii) We know from the numerics that τ < 3 and that G(0) is non-zero. This
means that the integrand remains finite or diverges more slowly than 1/u
as u→ 0. The integral therefore converges at the lower limit as 1/sξ → 0,
allowing us to replace the lower limit by zero without affecting the result
to leading order in 1/sξ. The integral is therefore just some constant.
This leads to the required result: χ(p) ∼ s3−τξ as p→ p−c .

(iii) Since sξ ∼ |p− pc|−1/σ as p→ p−c , we obtain

χ(p) ∼ s3−τξ ∼ 1/|p− pc|(3−τ)/σ as p→ p−c .

Comparing this equation with the definition of γ,

χ(p) ∼ 1

|p− pc|γ
as p→ p−c ,

we deduce that

γ =
3− τ
σ

as required.

Since τ = 2.19 and σ = 0.45, we decuce that γ = 1.80.

(d) When p = pc, equation (2) from the question becomes

∞∑
s=1

sn(s, pc) = pc

Using the scaling form of n(s, pc) and the same technique as above, we deduce
that

pc ∼
∫ ∞
1

s1−τG(s/sξ)ds.

Since pc is finite the integral must converge as sξ →∞. Noting that G(s/sξ)→
G(0) as sξ →∞, we obtain

pc ∼ G(0)

∫ ∞
1

s1−τds as sξ →∞.

This integral diverges at the upper limit if τ ≤ 2, so we deduce that τ > 2.
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Statistical Mechanics Answer Sheet 5

Finite-Size Scaling

1. Percolation probability

(a) The probability that there is a percolating cluster in one dimension is the
probability that all L sites are occupied:

Π(p, L) = pL = (eln p)L = eL ln p .

ln p < 0 because 0 < p < 1. Therefore, Π(p, L) is a decaying exponential in
the system size. We can write Π(p, L) = g1D(L/ξ) with

g1D(x) = e−x and ξ(p) =
1

| ln p|
.

(b) (i) Since ξ ∼ |p− pc|−ν , we can substitute for ξ(p) to obtain

Π(p, L) = g±(L|p− pc|ν) = G((p− pc)L1/ν),

where

G(u) =

{
G(u) = g+(uν), u > 0,
G(u) = g−(|u|ν), u < 0.

The function G and its derivative dG/du are continuous at u = 0 if Π
and dΠ/dp are continuous at p = pc.

(ii) dΠ/dp = L1/νG′((p−pc)L1/ν) has a sharp peak. The position of the peak
is at p = pc and the peak height is L1/νG′(0). So, this height diverges as
L→∞.
We know that Π increases from 0 to 1 across the percolation threshold.
So, the area under dΠ/dp in a plot against p remains constant at unity.
So, as the peak height increases with system size, the peak must become
narrower.

The width of dΠ/dp can be determined by a criterion such as the point
where G′(u) reaches a fixed value, G′(u) = 0.5G′(0), say. This gives two
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values for |p−pc|L1/ν = C± for either side of the transition. The width can
be defined as the difference between these values: δp = (C+−C−)/L1/ν ∼
L−1/ν .
Alternatively, we can use as a measure of the width the inverse of the
maximum slope (dΠ/dp)−1 = 1/[L1/νG(0)].
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The peak in Π′ narrows and increases in height as the system size increases.

The area under the peak remains constant at unity.

2. Mean cluster size

(a) The scaling hypothesis postulates that the cluster length scale ξ is the only
characteristic length scale in the problem (at lengths much greater than the
lattice spacing). Finite-size effects therefore depends on the relative size of L
compared to this sole length scale ξ. Therefore, we expect the function f to
be a function of the ratio of ξ to L: χ(p, L) = χ(p,∞)f(ξ/L).
Now, we know that χ(p,∞) ∼ |p−pc|−γ for the infinite system. In terms of the
cluster length scale ξ ∼ |p− pc|−ν , we can write χ(p,∞) ∼ [ξ(p)]+γ/ν . There-
fore, we can express χ solely in terms of ξ and L without explicit dependence
on p:

χ(p, L) = χ(p,∞)f(ξ/L) ∼ ξγ/νf(ξ/L) .

(b) When L� ξ, the system is larger than any characteristic length scale in the
system and L can be treated as effectively infinite. Therefore, f(x� 1) ' 1.

Conversely if L � ξ, then the system does not see the characteristic length
at all and χ(p, L � ξ) should become independent of ξ. This means that
the small-x behaviour of f(x) must be of a form that would cancel out the
dependence on ξ: f(x� 1) ∼ x−γ/ν , so that

χ(p, L� ξ) ∼ ξ+γ/νf(ξ/L� 1) ∼ ξ+γ/ν(ξ/L)−γ/ν ∼ Lγ/ν

has no dependence on ξ.

2



(c) χ(pc, L) belongs to the regime where L � ξ. The previous part tells us that
χ(pc, L) ∼ Lγ/ν .
In other words, the mean cluster size does not diverge as p crosses the thresh-
old. It simply has a peak whose height is large for large systems. The divergent
and singular behaviour of χ is only found in the limit of an infinitely large
system.

(d) This finite-size scaling of χ(p, L � ξ) is best obeyed when ξ is infinite, i.e.,
at pc. This allows us to extract the exponent γ/ν from χ(pc, L) ∼ Lγ/ν using
the slope of the plot of lnχ(pc, L) against lnL.
We can also measure γ by itself by using data in the range L � ξ(p). In
other words, we need data sufficiently far away from the critical point that
the cluster length scale ξ(p) has not yet reached the system size L. Then,
the typical clusters are much smaller than the system and are not cut off by
the edges of the system. The value of the system size L should not make
any difference to the mean cluster size. Therefore, χ(p, L � ξ) ' χ(p,∞) ∼
|p− pc|−γ so that a log-log plot would give γ as the slope.
This gives us to a value for γ and we can deduce the value of ν using the
measured value of γ/ν.

Scaling Relations

3. Cluster size distribution and mean cluster size

(a) (i) Use the same logic as the previous question for χ(p, L):

sξ(p, L) = sξ(p,∞)g(ξ/L) ∼ |p− pc|−1/σg(ξ/L) .

with g(0) = 1 to match the L→∞ form.
As before, write the whole expression in terms of ξ(p), i.e., everything
that is singular depends on p through ξ(p) ∼ |p− pc|−ν :

sξ(p, L) ∼ ξDg(ξ/L) with D = 1/σν .

The system should not see the scale ξ when its linear size L is much
smaller than ξ. So, we need sξ(p, L � ξ) to be independent of ξ and so
g(x) must be ∼ 1/xD for large x. This gives:

sξ(p, L� ξ(p)) ∼ ξD(L/ξ)D ∼ LD = L1/σν .

(ii) At the threshold p = pc, the cluster length scale ξ(p) is infinite. So, our
previous results says that sξ(pc, L) ∼ LD = L1/σν for all L. The scaling
hypothesis says that n(s, p, L) should be only controlled by this single
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length scale. So, we can just substitute sξ(p, L) for sξ into the form for
n(s, p, L→∞). Setting p = pc gives:

n(s, pc, L) ∼ s−τG(s/sξ(pc, L)) ∼ s−τG(s/LD)

with D = 1/σν.

(b) (i) The mean cluster size χ(p) is the expectation value of the cluster size to
which an occupied site belongs. The density of clusters of size s is n(s, p),
so the density of occupied sites involved in clusters of size s is sn(s, p).
The normalised probability for finding a site belonging to cluster of size s
is therefore P (s) = sn(s, p)/

∑
s sn(s, p). To obtain the average, we need

to sum over the cluster sizes s weighted by this probability distribution.
Therefore,

χ(p) =
∞∑
s=1

sP (s) =
∞∑
s=1

s× sn(s, p)

/
∞∑
s=1

sn(s, p) .

But the total density occupied sites is p for a site occupation probability
of p, i.e., the denominator must be p.

χ(p) =
1

p

∞∑
s=1

s2n(s, p) .

(ii) We know the finite-size behaviour for χ and n at criticality. We require
that both sides of the relationship between n and χ scale in the same way
with L:

Lγ/ν ∼ 1

pc

∞∑
s=1

s2 × s−τG(s/LD)

∼
∫ ∞
1

ds s2−τG(s/LD) ∼
∫ ∞
1/LD

LDdx (xLD)2−τG(x)

∼ LD(3−τ)
∫ ∞
1/LD

dx x2−τG(x)

with D = 1/σν. Now, if G(0) is non-zero and 3 − τ > 0, the lower
limit of the integral does not diverge if we take 1/LD to zero. The er-
ror we make by moving the lower limit to zero will be small: of order

G(0)
∫ 1/LD

0
x2−τdx ∼ (1/LD)3−τ , which vanishes as L→∞. Therefore,

Lγ/ν ∼ LD(3−τ)
∫ ∞
0

dx x2−τG(x) .
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Assuming that G(x) decays exponentially at large x, the integral con-
verges and is just a numerical factor with no dependence on physical
parameters. We therefore deduce that γ/ν = D(3− τ). Since D = 1/σν,
we arrive at:

γ = (3− τ)/σ .
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Statistical Mechanics Answer Sheet 6

Real space renormalisation group transformation

1. Site percolation on a one-dimensional lattice (Exam 2010).

(a) (1) Zoom out to scale b, that is, divide the lattice into blocks of linear scale b;
(2) Perform coarse-graining to find new effective parameters p → p′ = Rb(p)
corresponding to occupation of the block site;
(3) Change unit of length to new scale so that all lengths ℓ become ℓ/b.

(b) Divide the chain into blocks of b sites. A block is part of a percolating section if
all the sites are occupied. This has probability pb. Therefore, the renormalised
system should have occupation probability Rb(p) = pb. Fixed points satisfy
the equation p⋆ = Rb(p

⋆) ⇒ p⋆ = 0, 1. pb < p for all 0 < p < 1 for the power
b > 1. Therefore, if we start off with any p < 1, we flow to p⋆ = 0. In other
words, p⋆ = 0 is stable and p⋆ = 1 is unstable.

(c) As with all physical length scales, ξ → ξ/b under RSRG. Therefore, ξ(p′ =

pb) = ξ(p)/b ⇒
[

ξ(pb)
]−1

= b [ξ(p)]−1 . Alternatively, in one-dimensional per-
colation, ξ(p) = −1/ ln p. Hence, ξ(pb) = −1/ ln(pb) = −1/(b ln p) = ξ(p)/b.

(d) We identify the percolation threshold with the unstable fixed point: pc = 1.
dRb/dp = bpb−1 = b at p = 1 and so the formula gives ν = ln b/ ln b = 1 so
that ξ(p) diverges as 1/(pc − p) = 1/(1 − p) as p → 1−.

(e) To convert the given expression to a useful form for this problem, write p =
ex. Let F (x) = F (ln p) = f(p). Then, the condition becomes F (bx) =
bF (x) ⇒ F (b ln p) = bF (ln p) ⇒ f(pb) = bf(p). Since the condition implies
that F (x) = αx, we have f(p) = α ln p. We can identify f(p) = 1/ξ(p) so
that 1/ξ(p) = α ln p as required.

(f) Writing p = 1 − δ, we see that 1/ ln p = 1/ ln(1 − δ) → −1/δ = 1/(1 − p) for
small δ. Therefore, both results for ξ agree as long as p is close to pc = 1.

2. Bond percolation on a square lattice in two dimensions. (RF Question)

(a) There are nine configurations that have a connected path from A to B:

1



p4 4p3(1 − p) 4p2(1 − p)2

Adding the probabilities for these configurations, we find

Rb(p) = p4 + 4p3(1 − p) + 4p2(1 − p)2

= p4 − 4p3 + 4p2. (1)

(b) (i) The fixed point Equation Rb(p) = p is solved graphically by plotting
the graph of Rb(p) versus p and locating the intersections with the line
Rb(p) = p.
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Figure 1: The fixed point Equation Rb(p
⋆) = p⋆ are p⋆ = 0, 0.38, 1.

tt inspection, we find the three fixed points

p⋆ =











0 trivial fixed point - empty lattice

0.38 non-trivial fixed point

1 trivial fixed point - fully occupied lattice.

(2)

(ii) When performing the real-space renormalisation procedure, length scales
are rescaled by the factor b.

If we start out with a finite correlation length, the rescaled correlation
length ξ′ = ξ/b will decrease (b > 1) with an associated flow in p-space
as indicated below. Starting out with p < p⋆, the flow will be toward
p⋆ = 0. If we started out with p > p⋆, the flow will be toward p⋆ = 1.

(iii) The correlation length ξ → ξ/b only remains invariant if ξ = 0, associated
with the trivial fixed points p⋆ = 0 (empty lattice) or p⋆ = 1 (fully
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(a)

(b)

p

ξ(p)

ξ

ξ/b

ξ/b2

ξ/b3

0 pc 1

0 pc 1
∗ ∗ ∗

Figure 2: (a) A sketch of the correlation length as a function of occupation probability.
The dotted line shows the position of pc. (b) The corresponding flow in parameter
space.

occupied lattice) or ξ = ∞, associated with the non-trivial fixed point
p⋆ ≈ 0.38.

Since the correlation length is ξ = 0 or ξ = ∞ at the fixed point, there is
no characteristic scale and scale invariance prevails.

(c) (i) Let A denote a constant. Then

ξ = A |p − pc|
−ν (3a)

ξ′ = A |Rb(p) − pc|
−ν . (3b)

As ξ′ = ξ/b we find

|p − pc|
−ν = b|Rb(p) − pc|

−ν = b|Rb(p) − R(pc)|
−ν, (4)

from which we find for p → pc

ν =
log b

log
(

dRb(pc)
dp

) . (5)

(ii) Now

dRb

dp
|p⋆ = (4p3 − 12p2 + 8p)|p⋆=0.38

≈ 1.53 (6)
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and hence

ν =
log 2

log 1.53
≈ 1.63. (7)

The exact values in d = 2 are pc = 0.5 and ν = 4/3,

Ising Model.

3. The entropy and the free energy of a system at equilibrium. (RF Question)

(a) According to the Boltzmann’s distribution, the probability pr to find an equi-
librium system in a microstate r with energy Er is given by

pr =
exp(−βEr)

∑

r exp(−βEr)
=

1

Z
exp(−βEr) (8)

where Z denotes the partition function and β = 1/(kBT ). Therefore, the
entropy

S = −kB

∑

r

pr ln pr

= −kB

∑

r

1

Z
exp(−βEr) [ln (exp(−βEr)) − ln Z]

= kB

ln Z

Z

∑

r

exp(−βEr) − kB

∑

r

(−βEr) exp(−βEr)

Z

= kB ln Z +
1

T

∑

r

Er exp(−βEr)

Z

= kB ln Z +
〈E〉

T
. (9)

(b) From part (a) we find

ln Z =
1

kB

(

S −
〈E〉

T

)

, (10)

so the free energy

F = −kBT ln Z

= −T

(

S −
〈E〉

T

)

= 〈E〉 − TS. (11)

4. Fluctuation-dissipation theorem.
First we note that the average total energy

〈E〉 = −

(

∂ lnZ

∂β

)

H

, (12)
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since

−

(

∂ ln Z

∂β

)

H

= −
1

Z

(

∂Z

∂β

)

H

= −
1

Z

∂

∂β





∑

{si}

exp(−βE{si})





H

=
1

Z

∑

{si}

exp(−βE{si})E{si}. (13)

However, the instantaneous total energy will, of course, fluctuate around the aver-
age total energy. The magnitude of the fluctuations is determined by the standard
deviation ∆E where

(∆E)2 = 〈(E − 〈E〉)2〉 = 〈E2 + 〈E〉2 − 2E〈E〉〉 = 〈E2〉 − 〈E〉2. (14)

Differentiating twice ln Z with respect to β we find

(∆E)2 =

(

∂2 ln Z

∂β2

)

H

(15)

since
(

∂2 ln Z

∂β2

)

H

= −
∂

∂β

(

−
∂ ln Z

∂β

)

H

= −
∂

∂β





1

Z

∑

{si}

exp(−βE{si})E{si}





H

=
1

Z

∑

{si}

exp(−βE{si})E
2
{si}

+
1

Z2

(

∂Z

∂β

)

H

∑

{si}

exp(−βE{si})E{si}

=
1

Z

∑

{si}

exp(−βE{si})E
2
{si}

+

(

∂ ln Z

∂β

)

H

1

Z

∑

{si}

exp(−βE{si})E{si}

= 〈E2〉 − 〈E〉2. (16)

However,
(

∂2 ln Z

∂β2

)

H

= −

(

∂〈E〉

∂β

)

H

= −

(

∂〈E〉

∂T

)

H

∂T

∂β
= −C

∂(kBβ)−1

∂β
= kBT 2C, (17)

where C denotes the heat capacity at constant external parameter. Hence, with c
denoting the heat capacity per spin, we have that

kBT 2c =
1

N

(

〈E2〉 − 〈E〉2
)

. (18)
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