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Statistical Mechanics Problem Sheet 1

Regular Fractals

1. Sierpinski carpet
The Sierpinski carpet is constructed by an iterative process akin to that used to
build a Sierpinski gasket. Take a square, divide it into 3 × 3 = 9 squares and
remove the central square. Then, repeat the procedure on the remaining squares.

Calculate the fractal dimension of this object.

2. Koch curve
The Koch curve is a line fractal constructed from an equilateral triangle. Take
each side of the triangle L, remove the middle third of each side and join up the
remaining sides with a triangular kink with sides L/3.
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The figure above shows the first three iterations.

(a) The Koch curve resembles the perimeter of a snowflake. By deducing a scaling
form for the length of the perimeter, calculate the fractal dimension of this
curve.

(b) It is said that, if we continue this iteration indefinitely, we will generate a curve
that has an infinite perimeter even though it obviously encloses a finite area.
Consider the Koch curve obtained by starting with a triangle of side L and
applying n iterations of the algorithm described above to obtain a snowflake
with line segments of length a. Find a scaling expression for the perimeter
of this curve as a function of L and a. Hence show that the perimeter does
indeed diverge as n→∞.

(c) [Optional.] Suppose the Koch curve is generated from a triangle of side L
with area Σ0 =

√
3L2/4. Let the area enclosed by the curve generated after

n iterations be denoted by Σn. Deduce the recurrence relation:

Σn = Σn−1 +
(

4

9

)n−1 Σ0

3
.

Hence show that the area enclosed tends to 8Σ0/5 after many iterations.
You may find the geometric series useful: 1 + x + x2 + . . . = 1/(1 − x) for
|x| < 1.

Random Fractals

3. 1D random walk

Consider a random walk of N steps in one dimension, where each step xi (i =
1, . . . , N) follows an exponential distribution p(x) ∝ e−|x|/a and there is no cor-
relation between different steps. After N steps, the total displacement is X =∑N

i=1 xi.

(a) What is the mean displacement 〈X〉?
(b) Show that the root-mean-square displacement is

√
2N a.

(c) Using the central limit theorem (see Appendix: Probability Basics in the lec-
ture notes), argue that, for N � 1, the total displacement X obeys the
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following distribution:

P (X) =
1√

4πNa2
e−X

2/4Na2 .

4. Ideal polymer

The random walk can be used as a model of a polymer molecule in a polymer
melt. In this question, we see how entropy plays an important part in the elastic
properties of materials such as rubber. (If you cannot do a part of the question,
you can skip to the next part.)

(a) Consider a three-dimensional random walk of N uncorrelated steps. For each
step ri = (xi, yi, zi), the component in each direction follows an exponential
distribution as for the 1D walk in the previous question:

p(x, y, z) ∝ e−(|x|+|y|+|z|)/a.

Let us denote the total displacement by R =
N∑
i=1

ri.

(i) Using the results from the 1D random walk in the previous question,
write down the mean displacement 〈R〉 and root-mean-square displac-
ment 〈R2〉1/2 of this walk. Give reasoning.

(ii) Argue using the central limit theorem that, for N � 1, the probability
density function for R is given by

P (R) =
1

(4πNa2)3/2
exp

(
− R2

4Na2

)
.

(iii) It is important to check results by dimensional analysis. Check that P (R)
has the correct dimensions.

(b) [Harder but contains the interesting physics!] If monomer-monomer repulsion
is ignored, we can assume that P (R) describes the end-to-end displacement of
an ideal polymer chain with N monomers in three dimensions. More precisely,
P (R)d3R is proportional to the probability of finding the end in a small
element of volume d3R centered at R. Speaking more loosely, we can say
that P (R) is proportional to the “number of ways”, W (R), in which the
polymer chain can start at the origin and end up at R.

(i) Using Boltzmann’s formula, show that the entropy of the ideal polymer
chain for a given displacement R is

S(R) = −kBR2/4Na2 + constant,

where kB is the Boltzmann constant.
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(ii) Suppose a constant force f is applied to the other end of the polymer.
Explain why the probability distribution P (R) at temperature T in the
presence of this applied force is

P (R) ∝ exp

(
− R2

4Na2
+

1

kBT
f ·R

)
.

(iii) Show that, in the presence of the applied force, the mean of the end-to-end
displacement R becomes

〈R〉 =
〈R2〉0
3kBT

f ,

where 〈R2〉1/20 is the rms end-to-end distance in the absence of the force
as computed in part (a)(i). In other words, the polymer chain obeys
Hooke’s law — extension ∝ tension. [Hint: by completing the square you
can show that the new distribution P (R) is also Gaussian but with a
non-zero mean.]

(iv) A rubber band is suspended vertically from the ceiling with a heavy
weight hanging from its end. It is a hot day and the room heats up. Does
the weight rise or fall?
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Tuesday 15th October 2013
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RF class at 12:00 on Wednesday 23rd October

Statistical Mechanics Problem Sheet 2

Percolation in One Dimension

1. Scaling form of order parameter
Consider one-dimensional site percolation on a finite chain of L sites subject to
periodic boundary conditions.

(a) Find n(s, p) when (i) s ≤ L− 2, (ii) s = L− 1, and (iii) s = L.

(b) Explain why the probability that a site belongs to a finite cluster is
∑L−1

s=1 sn(s, p)

rather than
∑L

s=1 sn(s, p).

(c) By calculating the right-hand side of the identity

P∞(p, L) = p−
L−1∑
s=1

sn(s, p) ,

confirm that the probability P∞(p, L) of a site belonging to the percolating
‘infinite’ cluster is pL.

(d) (i) Using the identity

ξ(p) = sξ(p) = − 1

ln p
,

which is valid for one-dimensional percolation, express the order parame-
ter P∞(p, L) as a function of the system size L and the correlation length
ξ.

(ii) Write the order parameter in the scaling form

P∞(ξ, L) = ξ−β/νP(L/ξ)

and identify the ratio of critical exponents β/ν and the associated scaling
function P . How does P(x) behave for x � 1 and x � 1? [The reason
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for expressing the exponent as the ratio −β/ν will become clear later in
the course.]

2. Moments and moment ratio of the cluster number density
Consider one-dimensional site percolation on an infinite lattice with site occupation
probability p.

(a) The kth moment Mk(p) of the cluster number density n(s, p) is defined by

Mk(p) =
∞∑
s=1

skn(s, p) .

Using the formula n(s, p) = (1 − p)2ps from lectures, show that, in the limit
as p→ p−c = 1−, where the characteristic cluster size sξ = −1/ ln p diverges,

Mk(p) ≈ (1− p)2sk+1
ξ

∫ ∞
1/sξ

uk exp(−u)du.

(b) Hence show that

Mk(p)→ Γk(pc − p)−γk as p→ p−c = 1− .

Identify the critical exponent γk and the critical amplitude Γk.

(c) Express the moment ratio

gk =
MkM

k−2
1

Mk−1
2

for p→ p−c , k ≥ 2 ,

in terms of the critical amplitudes and hence find the value of gk.

3. Site-bond percolation in d = 1 (Rapid Feedback question)
Consider one-dimensional site-bond percolation on an infinite lattice. Sites are
occupied with probability p while bonds are occupied with probability q (see the
figure below). A cluster of size s is defined as having s consecutive occupied sites
with s − 1 intermediate occupied bonds. In the figure below, for example, the
left-most cluster has size s = 3: it terminates to the right because a bond is empty
and to the left because a site is empty.

s=3 s=2

(a) What is the critical point (pc, qc) for site-bond percolation in one dimension?
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(b) Show that the cluster number density n(s, p, q) is given by the equation

n(s, p, q) = psqs−1(1− pq)2 .

(c) Calculate the average cluster size

χ(p, q) =

∑∞
s=1 s

2n(s, p, q)∑∞
s=1 sn(s, p, q)

.

Comment on the result.
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Tuesday 22nd October 2013

Hand in to UG office by 14:00 on Monday 28th October

Marked work available in UG office by 12:00 on Wednesday 30th October

RF class at 12:00 on Wednesday 30th October

Statistical Mechanics Problem Sheet 3

Site Percolation on a Bethe Lattice

1. Correlation function
Consider site percolation on a Bethe lattice of coordination number z with an
occupation probability of p for each site. Starting at a given site i, we can define a
distance lij to another site j using the number of steps needed to reach site j from
site i.

(a) The correlation function g(i, j) is defined as the probability that site j is in
the same cluster as site i. Show that g(i, j) = plij .

(b) Argue that the mean cluster size χ(p) is

χ(p) =
∑

all sites j

g(i, j) .

(c) Using the expression above for g(i, j), show that, for p(z − 1) < 1,

χ(p) =
1 + p

1− p(z − 1)
.

[Hint: Group together all sites at the same distance from i and sum up the
contribution from each group.]

(d) Hence, write down the percolation threshold pc for this system.
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2. Order parameter (Rapid Feedback question)
Consider site percolation on a Bethe lattice of coordination number z, with occu-
pation probability p for each site.

(a) Show that the percolation threshold is pc = 1/(z − 1).

(b) Consider the tree-like structure starting at a given site A and its neighbour-
ing sites, each of which is the root of a branch of this tree. Show that the
probability that site A is part of the infinite percolating cluster is given by
P∞ = p(1 − Qz), where Q is the probability that a branch is not connected
to infinity.

(c) Explain why the above formula does not work for percolation on a square
lattice.

(d) Returning to the Bethe lattice, show that 1 − Q = p(1 − Qz−1). [Hint: see
course notes.]

(e) Hence show that either Q = 1 or 1 +Q+ . . . Qz−2 = 1/p.

(f) Consider p just above the percolation threshold pc and assume that the phase
transition is continuous with P∞ as the order parameter. What can we assume
about P∞(p) and Q(p) as p→ p+c ?

(g) Using an appropriate Taylor expansion, derive an expression for Q(p) as p→
p+c . Hence show that

P∞(p) ' 2z

z − 2
(p− pc)

as p→ p+c .

(h) If Q is not equal to 1, we showed in part (e) that it must satisfy a polynomial
equation of order (z − 2). In part (g) we derived an approximation for one
of the roots of this equation in the regime immediately above the percolation
threshold. By the fundamental theorem of algebra, however, a polynomial
equation of order (z − 2) always has (z − 2) roots. What about the other
(z − 3) solutions? Since Q is a probability, physically relevant solutions must
satisfy 0 ≤ Q ≤ 1. Show that the polynomial equation has only one real
positive solution and that this solution is only ≤ 1 (and hence acceptable) if
p > 1/(z − 1). What happens otherwise?
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Tuesday 29th October 2013

Hand in to UG office by 14:00 on Monday 4th November

Marked work available in UG office by 12:00 on Wednesday 6th November

RF class at 12:00 on Wednesday 6th November

Statistical Mechanics Problem Sheet 4

Questions from 2011 Exam

1. Consider the site percolation problem on a Bethe lattice (Fig. 1) with occupation
probability p at each site. The occupation of different sites is independent of each
other.

l = 0

l = 1

l = 2

l = 3

branch

subbranch

Figure 1: Bethe lattice for the example of coordination number z = 3. On a Bethe lattice,
each site is connected to z neighbours. It has a tree-like structure. Consider the tree-like
structure starting at a given site (l = 0). This site has z neighbouring sites (at generation
l = 1), each of which is the root of a branch of the tree. Each branch has further subbranches
(starting at l = 2, 3, . . .).

(a) The mean cluster size χ(p) is the expected number of sites in the cluster to
which a randomly chosen occupied site belongs. It can be shown that, for
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(z − 1)p < 1,

χ(p) =
1 + p

1− (z − 1)p
. (1)

(i) How do you expect the mean cluster size χ(p) to behave as the system
approaches the percolation threshold pc? Hence, identify pc as a function
of the coordination number z of the Bethe lattice.

(ii) Show that, as p → p−c (i.e., from below), the mean cluster size is well
approximated by a power law: χ(p) ∼ (pc − p)−γ. Identify the exponent
γ.

(b) Let N(l, p) be the expected number of occupied sites at generation l that
belong to the same cluster as an occupied site at generation 0. It can be
shown that

N(l, p) =
z

z − 1
[(z − 1)p]l for (z − 1)p < 1. [DO NOT PROVE] (2)

(i) Show that N(l, p) decays exponentially as a function of l: N(l, p) ∼ e−l/lξ ,
where the characteristic scale for the decay is given by lξ(p) = 1

| ln[(z−1)p]| .

(ii) How do you expect lξ(p) to behave as p approaches the percolation thresh-
old pc from below? Identify pc using what you expect for lξ as a criterion.
Check that this agrees with the threshold you identified in part (a)(i).

(iii) Show that, as p→ p−c , the characteristic scale lξ is well approximated by
a power law: lξ ∼ (pc − p)−ν . Identify the exponent ν.
You may find it useful to write p = pc(1−δ) and consider approximations
valid for small δ.

(c) (i) Using the definitions of χ and N , explain why χ(p) = 1 +
∑∞

l=1N(l, p).

(ii) Using the above relationship between N(l, p) and χ(p) and the expression
(2) for N(l, p), prove that χ(p) is indeed given by equation (1).

You will need to relate the relevant sum to a geometric series. Recall
that:

∑∞
n=0 x

n = 1
1−x for |x| < 1. (Note the limits of the sum.)
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2. In the site percolation problem, sites on an infinite cubic lattice are occupied
independently with probability p. The cluster size distribution n(s, p) gives the
density of (non-percolating) clusters of size s, i.e., containing s sites. It can be
written in the scaling form:

n(s, p) =
1

sτ
G
(

s

sξ(p)

)
with sξ(p) ∼

1

|p− pc|1/σ
as p→ pc, (1)

where pc is the percolation threshold. Numerical results for the cubic lattice show
that τ = 2.19 and σ = 0.45. Also, it was found that G(0) is finite and non-zero.

(a) (i) Sketch the cluster size distribution at the percolation threshold (p = pc)
on a log-log scale, i.e., lnn(s, pc) vs. ln s. Discuss the physical significance
of this distribution.

(ii) Give a physical interpretation of the quantity sξ(p). Sketch on the same
diagram as above the distribution n(s, p) at p = 0.9pc and at p = 0.95pc.

(b) Show that, below the percolation threshold (p ≤ pc),

∞∑
s=1

sn(s, p) = p. (2)

(c) The mean cluster size diverges as χ(p) ∼ 1/|p − pc|γ near the percolation
threshold. It can be shown that

χ(p) =
1

p

∞∑
s=1

s2n(s, p). [DO NOT PROVE]

(i) Using the scaling form (1), show that, as p→ p−c ,

χ(p) ∼ s3−τξ

∫ ∞
1/sξ

u2−τG(u)du.

(ii) Using an appropriate approximation for the lower limit of the integral,
show that χ(p) ∼ s3−τξ as p→ p−c . You should justify the approximation
using the information provided at the start of the question.

(iii) Hence, find a numerical value for the exponent γ.

(d) Consider equation (2) with p = pc. Using the scaling form (1), show that the
exponent τ is greater than 2 for the site percolation problem on any lattice.
(Do not worry about the special case of τ = 2.)
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Statistical Mechanics Problem Sheet 5

Finite-Size Scaling

1. Percolation probability

Consider the probability Π(p, L) of having a
percolating cluster in a system of linear size L
with site occupation probability p. For an in-
finite system, Π(p,∞) is zero below the perco-
lation threshold and unity above the threshold.
For a system of finite size, Π is smoothed out
so that both Π and dΠ/dp are continuous func-
tions of p.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

p

P

finite L

L=¥

(a) Consider first one-dimensional site percolation. Show that Π(p, L) can be
written in the scaling form

Π(p, L) = g1D(L/ξ(p)).

Identify the function g1D and the correlation length ξ as a function of p.

(b) In higher dimensions we can also identify a scaling form

Π(p, L) = g±(L/ξ(p)),

with ξ(p) ∼ |p− pc|−ν as p→ p±c . Note that we need different g functions for
different sides of the transition because Π is not symmetric around pc.

(i) Show that the scaling form can be rewritten as

Π(p, L) = G((p− pc)L1/ν),

and define the single function G in terms of the two functions g±. [Note

that G depends on the signed quantity p − pc while g+ and g− depend on

|p− pc| only.]
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(ii) Sketch dΠ/dp for different system sizes. How does the width of this
function evolve with system size?

2. Mean cluster size

In an infinite system, the mean cluster size near the percolation threshold is given
by χ(p, L = ∞) ∼ |p − pc|−γ as p → pc. The cluster length scale diverges as
ξ(p) ∼ |p− pc|−ν .

(a) A finite-size scaling form for the mean cluster size χ(p, L) for a finite system
of size L can be written using χ(p,∞) as a starting point:

χ(p, L) = χ(p,∞)f(ξ/L) .

Explain the assumptions in arriving at this expression.
Assuming that p is very close to pc, express the scaling form in terms of the
lengths ξ and L only.

(b) Deduce the form of f(x) in the two asymptotic regimes when x� 1 and when
x� 1. Give your reasoning.

(c) Hence, show that
χ(pc, L) ∼ Lγ/ν . (1)

(d) Explain how you would use numerical data on χ(p, L) at different p and L to
measure the exponents γ and ν.

Scaling Relations

3. Cluster size distribution and mean cluster size (Rapid Feedback question)

(a) The cluster number density for the infinite system follows the scaling form:

n(s, p, L→∞) ∼ s−τG(s/sξ) for s� 1,

with the cluster size diverging like sξ(p, L → ∞) ∼ |p − pc|−1/σ as p → pc.
The characteristic length scale of the clusters diverges as ξ(p) ∼ |p − pc|−ν .
This question extends this form to finite-size systems.

(i) Using sξ(p,∞) as a starting point, write down a finite-size scaling form for
the characteristic cluster size sξ(p, L) for a system with finite size L. This
scaling form should be a function of the system size L and characteristic
length ξ only. Hence, deduce the behaviour of sξ(p, L) for L� ξ(p).

(ii) Using the scaling hypothesis, show that the cluster size distribution at
the percolation threshold for a system of finite size L should be given by

n(s, pc, L) ∼ s−τG(s/LD) . (2)

Identify the exponent D in terms of σ and ν.
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(b) The mean cluster size χ(p) is the expectation value of the cluster size to which
an occupied site belongs.

(i) Derive the relationship between the mean cluster size χ(p) and the cluster
size distribution n(s, p).

(ii) Use this relationship to link the form (1) for the mean cluster size at
p = pc and the form (2) for n(s, pc, L). Hence, derive the scaling relation

γ = (3− τ)/σ.

You may assume that G(0) is non-zero, G(x) decays exponentially at large
x, and τ < 3.
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Statistical Mechanics Problem Sheet 6

Real space renormalisation group transformation

1. Site percolation on a one-dimensional lattice (Exam 2010).

Consider the site percolation problem on a one-dimensional chain where each site is
occupied independently with probability p. In this question, we discuss a real-space
renormalisation group (RSRG) scheme where each step involves renormalising a
block of b adjacent sites, b being an integer greater than 1.

(a) Describe briefly the three main steps of the RSRG scheme.

(b) Show that, after one RSRG step, the site occupation probability p should be
renormalised to p′ = Rb(p) = pb. Hence, identify the stable and unstable fixed
points of this transformation.

(c) The system has a characteristic cluster length ξ(p) which is a function of the
probability p. Show that this RSRG scheme implies that

[

ξ(pb)
]

−1

= b [ξ(p)]−1 (1)

for any integer b.

(d) In renormalisation group theory, it can be shown that ξ(p) ∼ (pc− p)−ν when
p is near the percolation threshold pc with

ν =
ln b

ln

(

dRb

dp

∣

∣

∣

p=pc

) . (2)

Without proof, use this formula, find the value of ν for this RSRG scheme.

(e) It can be shown that, if a function F (x) obeys the relationship

F (bx) = bF (x) (3)
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for any integer b, then F (x) = ax for some real constant a.[Do not prove]
Hence or otherwise, show that the property given by Eq. (1) implies that

ξ(p) ∝
1

ln p
. (4)

Hint: consider x = ln p.

(f) Do the results for ξ(p) from parts (d) and (e) agree? Explain your reasoning.

2. Bond percolation on a square lattice in two dimensions. (RF Question)

In bond percolation, each bond between neighbouring lattice sites is occupied with
probability p and empty with probability (1− p). The bond percolation threshold
for a square lattice pc = 0.5. In a real-space renormalisation group transformation
on the square lattice with unit lattice spacing, the lattice is replaced by a new
renormalised lattice, with super-bonds of length b = 2 occupied with probability
Rb(p), following the procedure shown in Figure 1

Rb(p)

Rb(p)

p p

p

p

A B A B

(a) (b) (c) (d)

Figure 1: (a) Original lattice with unit lattice spacing where each bond is occupied
with probability p. (b) Lattice where every second column in the original lattice is
moved one lattice unit to the left. (c) Lattice where, in addition, every second row in
the original lattice is moved one lattice unit upwards. In this lattice, there are two
bonds between each site. (d) Renormalised lattice with lattice spacing b = 2 where
each super-bond is occupied with probability Rb(p).

(a) Assuming that the super-bond between A and B in the renormalised lattice
is occupied if there exists a connected path from A to B along the four bonds
in lattice (c), show that

Rb(p) = p4 − 4p3 + 4p2. (5)

(b) (i) Solve graphically the fixed point equation for the renormalisation group
transformation in Equation (5).

(ii) Describe the flow in p-space and the renormalisation of the correlation
length when applying the renormalisation group transformation repeat-
edly.
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(iii) Identify clearly the correlation lengths associated with the fixed points p⋆

of the renormalisation group transformation and hence explain why fixed
points are associated with scale invariance.

(c) (i) Derive a form for the critical exponent ν in terms of the renormalisation
group transformation.

(ii) Hence, identify the critical occupation probability pc, and determine the
correlation length exponent ν predicted by the renormalisation group
transformation in Equation (5).

Ising Model.

3. The entropy and the free energy of a system at equilibrium. (RF Question)

The entropy S of a thermal system at equilibrium is defined as

S = −kB
∑

r

pr ln pr, (6)

where kB is Boltzmann’s constant and pr is the probability of the system being in
a microstate r.

(a) Use the Boltzmann’s distribution for pr to show that

S = kB lnZ + 〈E〉/T. (7)

(b) The total free energy
F = −kBT lnZ. (8)

Show that
F = 〈E〉 − TS. (9)

4. Fluctuation-dissipation theorem.

Consider the Ising model with N spins. The susceptibility per spin, χ, is related
to the variance of the total magnetisation by

kBTχ =
1

N

(

〈M2〉 − 〈M〉2
)

, (10)

as proved in Section 2.1.2 in the Lecture Notes. Using a similar strategy, prove
that the specific heat c is related to the variance of the total energy by

kBT
2c =

1

N

(

〈E2〉 − 〈E〉2
)

. (11)
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Numerical Answers

1. (b) Stable fixed point p⋆ = 0. Unstable fixed point p⋆ = 1. (d) ν = 1.

2. (b)(i) p⋆ = 0, 0.38, 1. (c)(ii) Predictions by RSRG transformation: pc ≈ 0.38 and
ν ≈ 1.63. Exact valued for d = 2: pc = 1/2 and ν = 4/3.
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Problem sheet 7 issued: Tuesday 19th November 2013

Solutions available from: Wednesday 27th November 2013

Statistical Mechanics Answer Sheet 7

1. The spin-spin correlation function and scaling relations. (RF Question)

(a) The spin-spin correlation function

g(ri, rj) = 〈 (si − 〈si〉) (sj − 〈sj〉) 〉

= 〈 sisj − 〈si〉sj − si〈sj〉 + 〈si〉〈sj〉 〉

= 〈sisj〉 − 〈si〉〈sj〉 − 〈si〉〈sj〉 + 〈si〉〈sj〉

= 〈sisj〉 − 〈si〉〈sj〉, (1)

where we use that the ensemble average operation 〈·〉 is a linear operation
and that the ensemble average of a constant is the constant itself.

(b) Assuming that the system is translationally invariant, we substitute m =
〈si〉 = 〈sj〉 and find

g(ri, rj) = 〈sisj〉 − m2

= 〈sjsi〉 − m2

= g(rj, ri) (2)

from which it follows that the correlation function is symmetric and thus a
function of the relative distance between the spins at positions ri and rj only,
that is,

g(ri, rj) = g(|ri − rj |). (3)

(c) (i) When |ri − rj| → ∞, the spins become uncorrelated, assuming that we
are not at the critical point that is! Thus

g(ri, rj) = 〈sisj〉 − 〈si〉〈sj〉

→ 〈si〉〈sj〉 − 〈si〉〈sj〉 for |ri − rj | → ∞

= 0. (4)

(ii) By definition the spin-spin correlation function of spin i with itself

g(ri, ri) = 〈sisi〉 − 〈si〉〈si〉 = 〈s2
i 〉 − 〈si〉

2. (5)
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Because si = ±1 ⇔ s2
i = 1 we have 〈s2

i 〉 = 〈1〉 = 1. Also 〈si〉 = m, so

g(ri, ri) = 1 − m2. (6)

We assume the external magnetic field H = 0 so we can replace m with
m0(T ). If T ≥ Tc, the magnetisation m0 = 0 so that

g(ri, ri) =

{

1 for T ≥ Tc

1 − m2
0(T ) for T < Tc.

(7)

The zero-field magnetisation per spin m0(T ) → ±1 for T → 0, implying

g(ri, ri) → 0 for T → 0. (8)

This result emphasises that the correlation function measures the fluctu-
ations of the spins away from the average magnetisation as is clear from
the original definition

g(ri, ri) = 〈 (si − 〈si〉)(sj − 〈sj〉) 〉. (9)

(iii) In the limit J/(kBT ) ≪ 1 (high temperatures relative to the coupling
constant), the spins will be orientated randomly, that is, there are no
correlations between the spins, so we expect g(ri, rj) → 0.

In the limit J/(kBT ) ≫ 1 (low temperatures relative to the coupling
constant), the spins will be aligned, that is, there are no fluctuations
away from the average spin, so we expect g(ri, rj) → 0.

(d) Because the susceptibility per spin diverges at the critical temperature in zero
external field

χ(T, 0) ∝ |T − Tc|
−γ for T → Tc, H = 0 (10)

the volume integral of the correlation function must also diverge at the critical
temperature. Defining r = |ri − rj|, we have

∫

V

g(ri, rj)d
drj ∝

∫

∞

a

g(r)rd−1 dr → ∞ for T → Tc, H = 0, (11)

where a is a lower cutoff = lattice constant. This implies that g(r) cannot
decay exponentially with distance r at the critical point (T, H) = (Tc, 0) since
this would make the integral convergent in the upper limit. However, the
divergence is consistent with an algebraic decay. Assuming

g(ri, rj) ∝ |ri − rj|
−(d−2+η)

= r−(d−2+η) for T = Tc, H = 0, and all r = |ri − rj| (12)
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then
∫

V

g(ri, rj)d
drj ∝

∫

∞

a

g(r)rd−1 dr

∝

∫

∞

a

r−(d−2+η)rd−1 dr

=

∫

∞

a

r1−η dr

=

{

[ 1
2−η

r2−η]
∞

a
if η 6= 2

[ln(r)]∞a if η = 2

that is, the integral will only diverge if the critical exponent η ≤ 2. The
divergence is logarithmic if η = 2 and algebraic if η < 2.

(e) (i) The correlation length diverges as ξ(T, 0) ∝ |Tc − T |−ν for T → Tc, H =
0. The critical exponent ν is independent of whether Tc is approached
from below or above, however, the amplitude might differ, as indicated
in Figure 1 below.

For T > Tc, the correlation length sets the upper linear distance over
which spins are correlated. It is also identified as the linear size of the
typical (characteristic) largest cluster of correlated spins and measures
the typical largest fluctuation away from states with randomly oriented
spins.

For T < Tc, the correlation length measures the fluctuations away from
the fully ordered state, that is, the upper linear size of the holes in the
cluster of aligned spins. There will be holes on all scales up to the corre-
lation length.

(ii) When T 6= Tc a finite correlation length ξ is introduced and

g(|ri − rj|) ∝ |ri − rj|
−(d−2+η)G±(|ri − rj |/ξ) for T → Tc, (13)

where
ξ(T, 0) ∝ |Tc − T |−ν for T → Tc, H = 0. (14)

Consider the relation between the susceptibility per spin and the corre-
lation function

kBTχ ∝

∫

V

g(ri, rj)d
drj. (15)

The left-hand side (LHS):

kBTχ(T, 0) ∝ |T − Tc|
−γ for T → Tc, H = 0. (16)
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Figure 1: Sketch of the correlation length ξ(T, 0) as a function of the temperature T
in units of the critical temperature Tc.
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The right-hand side (RHS):
∫

V

g(ri, rj)d
drj ∝

∫

∞

a

r−(d−2+η)G±(r/ξ)rd−1 dr

=

∫

∞

a

r1−ηG±(r/ξ) dr

=

∫

∞

a

(r̃ξ)1−ηG±(r̃) dr̃ξ with r = r̃ξ

= ξ2−η

∫

∞

a

r̃1−ηG±(r̃) dr̃

= |T − Tc|
−ν(2−η)

∫

∞

a

r̃1−ηG±(r̃) dr̃ for T → T±

c . (17)

The integral is just a number (which numerical value, however, depends
on from which side Tc is approached due to the two different scaling
functions G±), so we can conclude by comparing the LHS with the RHS
that

γ = ν(2 − η). (18)

(iii) We assume T ≤ Tc and consider the situation in zero external field H = 0
with m0 replacing m. We define

g̃(r) = g(r) + m2
0 = 〈sisj〉. (19)

For T < Tc, the correlation length ξ < ∞. As the correlation length sets
the upper limit of the linear scale over which spins are correlated, the
spins will be uncorrelated in the limit r → ∞ as r ≫ ξ. Thus

g̃(r) = 〈sisj〉 → 〈si〉〈sj〉 = m2
0 ∝ (Tc − T )2β for T → T−

c . (20)

This is the reason for considering the function g̃(r) and not g(r) since the
latter will approach zero for r ≫ ξ.

At T = Tc where the correlation length in infinite, the magnetisation is
zero in zero external field, i.e., m0(Tc) = 0. Thus

g̃(r) = g(r) ∝ r−(d−2+η) at T = Tc. (21)

One would thus expect, à la finite-size scaling in percolation theory, that

g̃(r) ∝

{

r−(d−2+η) for r ≪ ξ
ξ−(d−2+η) for r ≫ ξ.

(22)

Thus for T < Tc where the correlation length is finite, we expect

g̃(r) ∝ ξ−(d−2+η) ∝ |T − Tc|
ν(d−2+η) for r ≫ ξ. (23)

Comparing Eq.(23) and Eq.(20) we identify the scaling relation

2β = ν(d − 2 + η) ⇔ d − 2 + η = 2β/ν. (24)
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2. Critical exponents inequality.

Given the thermodynamic relation

χ (CH − CM) = T

(

∂〈M〉

∂T

)2

H

(25)

As CM ≥ 0 and χ ≥ 0 it follows that

χ CH ≥ T

(

∂〈M〉

∂T

)2

H

. (26)

Using the scaling of the different quantities close to the critical point

χ(T, 0) ∝ |T − Tc|
−γ for T → Tc, H = 0,

CH ∝ |T − Tc|
−α for T → Tc, H = 0,

〈M〉 ∝ (Tc − T )β for T → T−

c , H = 0 implying,

∂〈M〉

∂T
∝ −(Tc − T )β−1 for T → T−

c , H = 0

so by substituting into Equation (26) we find

(Tc − T )−γ (Tc − T )−α ≥ Tc

(

−(Tc − T )β−1
)2

for T → T−

c

(Tc − T )−γ−α ≥ Tc (Tc − T )2β−2 for T → T−

c

from which we can conclude that

−γ − α ≤ 2β − 2 ⇔

γ + α ≥ 2 − 2β ⇔

α + 2β + γ ≥ 2. (27)

Notice that the inequality can be repalced by an equality for d = 1, 2, 3, and 4 and
the mean-field exponents for the Ising Model.

3. Eigenvalues, eigenvectors and diagonalisation.

(a) Assume x 6= 0 is an eigenvector for f with eigenvalue λ, that is

f(x) = λx. (28)

Since f is linear,
f(αx) = αf(x) = αλx = λ(αx) (29)

so αx is also an eigenvector with the same eigenvalue λ when α 6= 0 (ensuring
αx 6= 0.
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(b) Assume x 6= 0 is an eigenvector for f with eigenvalue λ. If A is the associated
matrix for the linear function f then

Ax − λx = (A − λI)x = 0, (30)

where I is the identity matrix. If det(A − λI) 6= 0 the matrix A − λI would
be invertible and the only solution to the Equation (30) would be the trivial
solution x = 0. Equation (30) can only have non-trivial solutions x 6= 0 if the
matrix A − λI is not invertible. Therefore, we have

det(A − λI) = 0. (31)

Equation (31) is called the characteristic equation or the secular equation for
the matrix A and the solutions λ are the eigenvalues of A (or f).

(c) We need to show that x1 · x2 = 0 assuming that

f(x1) = λ1x1 and f(x2) = λ2x2 with λ1 6= λ2. (32)

f(x1) · x2 = λ1x1 · x2 (33a)

x1 · f(x2) = λ2x1 · x2. (33b)

Since f is symmetric
λ1x1 · x2 = λ2x1 · x2. (34)

However, λ1 6= λ2 from which we conclude

x1 · x2 = 0. (35)

(d) (i) Consider the real and symmetric matrix

T =

(

exp(βJ + βH) exp(−βJ)
exp(−βJ) exp(βJ − βH)

)

. (36)

The eigenvalues λ± of T are the solutions to the characteristic equation

det(T − λI) = 0. (37)

The determinant

det(T − λI) =

∣

∣

∣

∣

exp(βJ + βH) − λ exp(−βJ)
exp(−βJ) exp(βJ − βH) − λ

∣

∣

∣

∣

= λ2 − [exp(βJ + βH) + exp(βJ − βH)]λ + exp(2βJ) − exp(−2βJ)

= λ2 − 2 exp(βJ) cosh(βH)λ + exp(2βJ) − exp(−2βJ),
(38)
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so the solutions to the characteristic Equation (37) are

λ± =
2 exp(βJ) cosh(βH) ±

√

4 exp(2βJ) cosh2(βH) − 4[exp(2βJ) − exp(−2βJ)]

2

= exp(βJ)

(

cosh(βH) ±

√

cosh2(βH) − 1 + exp(−4βJ)

)

= exp(βJ)

(

cosh(βH) ±

√

sinh2(βH) + exp(−4βJ)

)

. (39)

(ii) Since λ+ > λ−, the associated eigenvectors must be orthogonal. To de-
termine the eigenvectors for T we must solve the equations

Tx+ = λ+x+ (40a)

Tx− = λ−x− (40b)

or equivalently

(T − λ+I)x+ = 0 (40c)

(T − λ−I)x− = 0 (40d)

Then we construct the matrix of eigenvectors

U = (x+ x−) (41)

that will satisfy

U
−1

TU =

(

λ+ 0
0 λ−

)

. (42)
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Tuesday 19th November 2013

Hand in to UG office by 14:00 on Monday 25th November 2013

Marked work available in UG office by 12:00 on Wednesday 27th November 2013

RF class at 12:00 on Wednesday 27th November 2013

Statistical Mechanics Problem Sheet 7

1. The spin-spin correlation function and scaling relations. (RF Question)

The spin-spin correlation function

g(ri, rj) = 〈(si − 〈si〉) (sj − 〈sj〉)〉, (1)

measures the correlations in the fluctuations of spins si and sj at positions ri and
rj around their average values 〈si〉 and 〈sj〉.

(a) Show that
g(ri, rj) = 〈sisj〉 − 〈si〉〈sj〉. (2)

(b) Assume the system is translationally invariant, that is, 〈si〉 = 〈sj〉 = m.
Discuss why this implies that the correlation function can only be a function
of the relative distance, that is, g(ri, rj) = g(|ri − rj|).

(c) (i) Discuss the behaviour of the correlation function g(ri, rj) in the limit
|ri − rj | → ∞ assuming T 6= Tc and zero external field H = 0.

(ii) Discuss the behaviour of the correlation function g(ri, ri) of spin i with
itself (i.e., in the limit |ri − rj | → 0) as a function of temperature T in
zero external field H = 0.

(iii) Discuss the behaviour of the correlation function g(ri, rj) in the limits of
J/(kBT ) ≪ 1 and J/(kBT ) ≫ 1 in zero external field H = 0.

The volume integral in d dimensions of the correlation function is related to the
susceptibility per spin χ, by

kBTχ =
∑

j

g(ri, rj) ∝

∫

V

g(ri, rj)d
drj . (3)

(d) Convince yourself that the divergence of the susceptibility per spin at the
critical point (T, H) = (Tc, 0) is achieved with an algebraically decaying cor-
relation function

g(ri, rj) ∝ |ri − rj|
−(d−2+η) for T = Tc, |ri − rj | ≫ 1, (4)
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defining a new critical exponent, η, and prove that η ≤ 2.
Hint: Assume Equation (4) is valid for all r = |ri − rj| and recall that for a

function depending only on the distance r but not the direction
∫

V
f(ri, rj) ddrj ∝

∫

∞

0
f(r)rd−1dr in d dimensions.

For T 6= Tc, the correlation function will have a cutoff, defining implicitly the
correlation length ξ, by

g(ri, rj) ∝ |ri − rj|
−(d−2+η)G±(r/ξ) for T → T±

c , |ri − rj | ≫ 1, (5a)

ξ ∝ |Tc − T |−ν for T → Tc, H = 0, (5b)

and the scaling functions

G±(x) =

{

constant for x ≪ 1

decays rapidly for x ≫ 1.
(6)

(e) (i) Sketch the correlation length as a function of temperature T , and discuss
the physical interpretation of the correlation length ξ.

(ii) Use Equation (3) and assume Equation (5) is valid for all r = |ri − rj| to
show the scaling relation

γ = ν(2 − η). (7)

(iii) Prove that
d − 2 + η = 2β/ν. (8)

Hint: Assume T ≤ Tc. Define g̃(r) = g(r) + m2 and consider the limit

r → ∞, that is, r ≫ ξ.

2. Critical exponents inequality.

The critical exponent β characterises the pick-up of the magnetisation per spin,
that is, m(T, 0) ∝ ± (Tc − T )β for T → T−

C . The critical exponent γ characterises
the divergence of the susceptibility per spin, that is, χ(T, 0) ∝ |T − Tc|

−γ for T → TC .
The critical exponent α characterises the divergence of the specific capacity, that
is, c(T, 0) ∝ |T − Tc|

−α for T → TC .

Given the thermodynamic relation

χ(CH − CM) = T

(

∂m

∂T

)2

H

, (9)

where T is temperature, χ is the susceptibility per spin, CH and CM are the
specific heat at constant external field and magnetisation and m(T, H) = 〈M〉/N
the average magnetisaion per spin, respectively, show that as CM ≥ 0 it follows
generally that the critical exponents satisfy the inequality

α + 2β + γ ≥ 2. (10)
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3. Eigenvalues, eigenvectors and diagonalisation.

Let f be a linear function from R
n into R

n. If there is a non-zero vector x ∈ R
n

and a number λ such that f(x) = λx, then x is called an eigenvector of the linear
function f , and λ is called its associated eigenvalue.

(a) Show that if x is an eigenvector for f so is αx for any number α 6= 0.

(b) Let A be the associated matrix for the linear function f . Argue that the
eigenvalues for the function f are the solutions to the characteristic equation

det(A − λI) = 0. (11)

(c) Assume that f is symmetric, that is,

f(x) · y = x · f(y) for all x, y ∈ R
n, (12)

or, if A is the associated symmetric matrix,

(Ax) · y = x · (Ay) for all x, y ∈ R
n. (13)

Show that if x1 and x2 are eigenvectors of f corresponding to distinct eigen-
values λ1 and λ2, then x1 and x2 are orthogonal, that is, x1 · x2 = 0.

(d) Consider the real and symmetric 2×2 matrix T in Section 2.4, Equation (2.61)
on page 141 in the lecture notes.

(i) Find the eigenvalues λ± for T.

(ii) Outline explicitly the procedure to construct a matrix U such that

U−1TU =

(

λ+ 0
0 λ−

)

. (14)

Note that there is no need to perform the procedure unless you feel the
urge to do so.
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Problem sheet 8 issued: Tuesday 26th November 2013

Solutions available from: Wednesday 4th December 2013

Statistical Mechanics Answer Sheet 8

1. Second-order PT in a mass-spring system: Landau theory. (RF Question)

(a) The total energy of the mass-spring system

U(θ) = elastic potential energy + gravitational potential energy

=
1

2
k(aθ)2 + mg(a cos θ − a)

=
1

2
ka2θ2 + mga(cos θ − 1). (1)

a
co

s
θ

a − a cos θ θ

a

k

m

O

P

Figure 1: The projection of the rod of length a onto the vertical dashed line has length
a cos θ where the angle θ is measured (positive clockwise) from the vertical. Hence,
the position of the center of mass of the variable mass m is a − a cos θ = a(1 − cos θ)
below the zeroth-level of the gravitational potential energy indicated by the horizontal
dashed line.

(b) (i) We expand the cosine to fourth order to find

U(θ) =
1

2
ka2θ2 + mga(1 −

θ2

2!
+

θ4

4!
− · · · − 1)

=
a

2
(ka − mg)θ2 +

mga

24
θ4 + O(θ6), (2)

where the coefficient of the fourth-order term is positive while the coeffi-
cient of the second-order term is zero for ka = mg and changes sign from
positive when ka > mg to negative when ka < mg.
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(ii) As the total energy U(θ) is an even function in θ (reflecting the symmetry
of the problem), all the odd terms in the Taylor expansion around θ = 0
are zero.

(iii) We denote the angle of equilibrium with θ0. When ka > mg, the unique
minimum is at θ0 = 0. When ka = mg, the unique minimum is at θ0 = 0.
When ka < mg, there are two minima at ±θ0 6= 0.

-1 -0.5 0 0.5 1

0 1
ka/mg

θ

U
(θ

)
θ 0

π/2

−π/2

(a)

(b)

ka > mg

ka = mg

ka < mg

Figure 2: (a) The energy, U(θ), versus the angle θ. The solid circles show the position
of the minima of the energy of the corresponding graph. For ka > mg, the minimal
energy implies θ = 0. For ka = mg, the trivial solution θ = 0 is marginally stable
However, for ka < mg, the minimal energy implies θ = ±θ0 6= 0. (b) The angle of
equilibrium, θ0 as a function of the ratio ka/mg.

(iv) The system is in equilibrium when dU/dθ = 0. Hence

dU

dθ
= a(ka − mg)θ +

mga

6
θ3

= mgaθ

(

ka

mg
− 1 +

1

6
θ2

)

= 0 (3)
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with solutions

θ0 =

{

0 for ka
mg

≥ 1

±
√

6(1 − ka/mg) for ka
mg

< 1

=

{

0 for mc

m
≥ 1

±
√

6[(m − mc)/m] for mc

m
< 1,

(4)

where mc = ka/g.

(v) See Figure 4.

(vi) Landau suggested a simplistic general theory of second-order phase tran-
sitions based on expanding the free energy in powers of the order pa-
rameter. In the absence of a magnetic-like field, symmetry dictates that
only even powers of the order parameter appear in the expansion. For
example, in the Ising model

f − f0 = a2(T − Tc)m
2 + a4m

4 with a2, a4 > 0,

where an expansion up to fourth order is sufficient to give a qualitative
description of second-order phase transitions occurring at temperature
Tc. The term f0 is an unimportant constant, while a4 > 0 in order for
the free energy to be physically realistic, i.e. not minimised by extreme
values of the order parameter. As written, the left-hand side is given
by a quartic polynomial which always has one trivial solution, m = 0,
and two non-trivial solutions, m = ±m0(T ), so long as T < Tc. As T
passes through Tc from above, the trivial solution becomes unstable and
two stable non-trivial solutions appear. Below Tc, therefore, the order
parameter of the system is non-zero.

(vii) The order parameter of the mass-spring system is the equilibrium angle
θ0 which is zero for m ≤ mc and non-zero for m > mc. The critical value
of the variable mass mc = ka/g.

2. Diluted Ising model.

(a) A spin si is situated on each lattice site ri. However, the spin only interacts
with with the nearest neighbours with probability p. Identifying a nonzero
coupling constant Jij = J > 0 as an occupied bond and Jij = 0 as an empty
bond, we have an exact mapping onto a bond percolation theory problem.

(b) (i) At T = 0, the total free energy F = 〈E〉 − TS = 〈E〉. Because an
equilibrium system will minimise the free energy, at T = 0 it will minimise
its energy. In order to minimise the energy, all spins within a given cluster
will point in the same direction. However, spins belonging to different
clusters need not point in the same direction.
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(ii) Within a cluster, si = sj so sisj = s2
i = 1 implying 〈sisj〉 = 1 if the

spins belong to the same cluster. If the spins i and j belong to different
clusters, they are not correlated at all, that is, given, e.g., that si = 1
then sj = 1 with probability 0.5 and sj = −1 with probability 0.5 leaving
〈sisj〉 = 0.5 · 1 + 0.5 · (−1) = 0. Hence

〈sisj〉 =

{

1 i, j in the same percolation cluster
0 otherwise.

(5)

(iii) For p < pc all clusters are finite. Since the clusters are not correlated, the
average magnetisation must be zero.
For p > pc, we can argue that all the finite clusters do not contribute
to the magnetisation as their magnetisation would average out to zero.
Hence, the magnetisation then becomes equal to P∞(p), the density of
the infinite cluster. In zero external field, the orientation of the spins in
the infinite cluster is either up + or down −.
For p = pc the argument is the same as for p > pc with the additional
information that the density of the infinite cluster P∞(p) is zero at p = pc

and hence there is no net magnetisation.
In summary

m0(p) = ±P∞(p) =

{

0 for p ≤ pc

6= 0 for p > pc.
(6)

(c) (i) P∞(p) is the probability for a spin to belong to the percolating infinite
cluster. As tanh(sH/kBT ) → 0 for H → 0±, the last term will vanish
and

m0(p) = lim
H→0±

m(p, H) = ±P∞(p)

consistent with the result of (b)(iii).

(ii) The susceptibility per spin in zero external field

χ(T, 0) =

(

∂m

∂H

)

T

∣

∣

∣

∣

H=0

.

Assuming H ≪ kBT we use the Taylor expansion tanh(sH/kBT ) ≈
sH/kBT +O ((sH/kBT )3). Since P∞(p) does not depend on the external
field, we find,

χ(T, 0) =

(

∂m

∂H

)

T

∣

∣

∣

∣

H=0

=

∞
∑

s=1

s2n(s, p)

kBT
= βχ(p) ∝ |p − pc|

−γ (7)

as the divergence of the second moment of the cluster number density
n(s, p) is characterized by the exponent γ when p → pc.
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(d) When p < pc, the magnetisation in zero external field m0(p) = 0. We are at
low temperature, so we may assume that within a cluster 〈sisj〉 = 1. In a
cluster of size s there are a total of s2 different pairs, so 1

kBT

∑

i

∑

j〈sisj〉 =
1

kBT
s2. We can calculate the average susceptibility per spin by summing over

all possible cluster sizes weighted by the cluster number density, that is,

χ(T, 0) =
∞
∑

s=1

(

1

kBT

∑

i

∑

j

〈sisj〉

)

n(s, p) =
1

kBT

∞
∑

s=1

s2n(s, p). (8)

3. (a) Landau theory for the Ising model.

(i) On each site ri, there is a spin variable si = ±1 that can take on only
two values: spin up (+1) or spin down (−1).

(ii) It is energetically favorable for neighbouring spins to be parallel. So,
J > 0 so that a pair of parallel spins where sisj = +1 has energy −J and
a pair of anti-parallel spins where sisj = −1 has energy +J .

(iii) The first sum runs over distinct nearest neighbour pairs (i.e., we assume
that the spin-spin interaction Jij fall off so rapidly that only nn interac-
tions are present). If z denotes the coordination number, then

∑

〈ij〉

1 =
z

2

N
∑

i=1

1 =
1

2
Nz, (9)

where the factor of 1/2 ensures that we are counting distinct nearest-
neighbour pairs only.

(b) See Figure 3.

0 1

-1

-0.5

0

0.5

1

T/Tc

m
0
(T

)

Figure 3: When T → 0, then m0(T ) → ±1. When T → T−
c , the magnetisation de-

creases sharply but continuously to zero at T = Tc. For all T ≥ Tc, the magnetisation
per spin in zero external field m0(T ) = 0.
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(c) See Figure 4.

-1 -0.5 0 0.5 1
m0(T )

f L
(m

;T
;0

)
T > Tc

T = Tc

T < Tc

Figure 4: The Landau free energy per spin fL(m; T ; 0) vs. the average magnetisation
per spin in zero external field m0(T ). The solid circles show the position of the
minima of the free energy of the corresponding graph. For T ≥ Tc, unique minimum
at m0(T ) = 0. For T < Tc, double minima at m0(T ) = ±m0 6= 0.

Minimise fL with respect to m:

(

∂f

∂m

)

T,H

= 0 ⇔ 2a2(T − Tc)m + 4a4m
3 − H = 0. (10)

In zero external field, we have

2m0(T )
[

a2(T − Tc) + 2a4m
2

0
(T )
]

= 0. (11)

For T ≥ Tc this implies m0(T ) = 0 because a4 > 0.

For T < Tc this implies m0(T ) = ± [a2(Tc − T )/2a4]
1/2 ∝ ± (Tc − T )1/2.

In summary

m0(T ) =

{

0 for T ≥ Tc

± [a2(Tc − T )/2a4]
1/2 for T → T−

c

∝

{

0 for T ≥ Tc

±(Tc − T )1/2 for T → T−
c .

(12)
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(d) See Figure 5.

-1 1

-1

-0.5

0

0.5

1

m
(T

,H
)

H

T > Tc

T < Tc

Figure 5: Sketch of the magnetisation per spin m(T, H) versus the external field H
for two different temperatures T > Tc and T < Tc. For large external fields, the
magnetisation saturates to m = ±1 for both graphs. When H = 0: For T > Tc graph
is continuous and it crosses the point (0, 0) because m(T, 0) = 0. For T < Tc, the
graph have a discontinuous jump at H = 0 because lim

H→0±
m(T, H) = ±m(T, 0) 6= 0.

(e) (i) I have been quite ‘naughty’ posing you this question as it is tempting you
to make wrong conclusions in order to reach an almost (a factor of 2 will
be missing) correct answer. Of course, I would never do that in an exam
situation. However, it might be very instructive because it exposes two
types of wrong-doing (that are intimately linked) that are found quite
frequently in literature on the Ising model.

Case 1 – wrong mean-field theory:

First, we derive the result for non-interacting spins in an external field H
(Sec. 2.2 in notes). The total energy is

E{si} = −H
N
∑

i=1

si. (13)
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The partition function is

Z(T, H) =
∑

{si}

exp
(

−βE{si}

)

=
∑

{si}

exp

(

βH

N
∑

i=1

si

)

=
∑

{si}

N
∏

i=1

exp (βHsi) = (2 coshβH)N . (14)

The free energy per spin

f(T, H) = −kBT ln (2 cosh βH) , (15)

and hence, the magnetisation per spin is given by

m(T, H) = −

(

∂f

∂H

)

T

= kBT
2 sinh βH

2 cosh βH
β = tanhβH. (16)

The total energy of the Ising model in this version of the mean-field model:

E{si} = −J
∑

〈ij〉

sisj − H
N
∑

i=1

si

≈ −J
∑

〈ij〉

sim − H
N
∑

i=1

si

= −Jm
z

2

N
∑

i=1

si − H

N
∑

i=1

si each site i has
z

2
distinct nn

= −

(

Jm
6

2
+ H

) N
∑

i=1

si z = 6 in d = 3 cubic lattice

= − (3Jm + H)

N
∑

i=1

si

= −Heff

N
∑

i=1

si, (17)

where we have introduced an effective external field

Heff = 3Jm + H. (18)

So far nothing illegal has taken place. However, now the argument
(wrongly) states that using Eq. (16), we find that the magnetisation
must satisfy the equation

m(T, H) = tanh βHeff = tanh (β3Jm + βH) . (19)
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To see that this is indeed a conclusion that cannot be drawn, we need
to go through the second case that is often presented in the literature.

Case 2 - wrong mean-field theory:

We start with the mean-field energy

E{si} ≈ − (3Jm + H)

N
∑

i=1

si. (20)

The associated partition function is

Z =
∑

{si}

exp

(

(β3Jm + βH)
N
∑

i=1

si

)

=
∑

{si}

N
∏

i=1

exp [(β3Jm + βH) si]

= [2 cosh (β3Jm + βH)]N . (21)

The free energy per spin is

f = −
1

N
kBT ln

[

[2 cosh (β3Jm + βH)]N
]

= −kBT ln [2 cosh (β3Jm + βH)] . (22)

Hence, the magnetisation per spin is

m = −

(

∂f

∂H

)

T

= kBT
2 sinh(β3Jm + βH)

2 cosh(β3Jm + βH)

(

β3J

(

∂m

∂H

)

T

+ β

)

= tanh(β3Jm + βH)

(

3J

(

∂m

∂H

)

T

+ 1

)

. (23)

However it is common to use a dirty trick and (wrongly) briefly assume
that m is independent of H . In doing so, we arrive at the following
equation for determining m in the mean-field picture

m = −

(

∂f

∂H

)

T

= kBT
2 sinh(β3Jm + βH)

2 cosh(β3Jm + βH)

= tanh(β3Jm + βH). (24)
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This is in effect what is tacitly done in case 1 also. Indeed, Eq.(16) states

m(T, H) = kBT
2 sinh βH

2 cosh βH

(

∂βH

∂H

)

T

(25)

and substituting in this equation Heff = 3Jm+βH we arrive at the same
result.

Case 3 - correct mean-field theory:

Following the derivation in the notes (Sec. 2.5), we find that the correct
equation for determining m in the mean-field picture is, in fact

m = tanh(β6Jm + βH), (26)

that is, there is an extra factor of 2 in the contribution to the ‘internal
field’.

Also, cases 1 and 2 would also fail to yield an equation for the magneti-
sation m using the equation

(

∂f

∂m

)

T,H

= 0 (27)

(ii) Mean field theory result:

m = tanh(β6Jm + βH) = tanh [(6Jm + H) /(kBT )] . (28)

Uncorrelated spins in an effective field Heff = H + 6Jm. Each spin feels
the external field H . Also, each spin feels the average magnetisation m
of each of its 6 (d = 3 cubic lattice) neighbouring spins. In the exchange
interaction: −Jsisj this corresponds to an effective internal field of 6Jm.

As you can see from the discussion above, this interpretation is strictly
speaking, not scientifically sound but nevertheless frequently used in the
literature.

10



Tuesday 26th November 2013

Hand in to UG office by 14:00 on Monday 2nd December

Marked work available in UG office by 12:00 on Wednesday 4th December

RF class at 12:00 on Wednesday 4th December

Statistical Mechanics Problem Sheet 8

1. Second order PT in a mass-spring system: Landau theory. (RF Question)

A rigid massless rod of length a can rotate around a fixed point O in the vertical
plane only. The orientation of the rod is given by its angle θ to be measured
positive clockwise from the vertical. At the top of the rod is placed a variable mass
m which is linked to a circular harmonic spring of radius a and spring constant k.
When the rod is vertical, the length of the spring equals its natural length, πa/2.

θ

a

k

m

O

P

(a) Show that the total energy of the mass-spring system is

U(θ) =
1

2
ka2θ2 + mga(cos θ − 1), (1)

where the zeroth-level of the gravitational potential energy is defined as the
horizontal dashed line passing through the point P, the position of the mass
when the rod is vertical.

(b) (i) Expand the function U(θ) in Eq. (1) around θ = 0 up to fourth order,
to show that

U(θ) =
a

2
(ka − mg)θ2 +

mga

24
θ4. (2)
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(ii) Explain why only terms of even order appear in the expansion in Eq. (2).

(iii) Sketch the function U(θ) in Eq. (2) for ka > mg, ka = mg, and ka < mg.

(iv) Using Eq. (2), find an explicit expression for the angle of equilibrium
θ0(m) when ka > mg and ka < mg.

(v) Sketch the solution of the angle of equilibrium θ0(m) as a function of the
ratio ka/mg. Relate the graph to the sketches from question (iii).

(vi) Briefly outline the Landau theory of second-order phase transitions in
general.

(vii) What is the order parameter of the mass-spring system? What is the
critical value mc of the variable mass m? Explain your answers.

2. Diluted Ising model.

Consider the diluted Ising model in zero external field with the energy

E{si} = −
∑

〈ij〉

Jijsisj , (3)

where si = ±1 is the spin at lattice position i, the sum runs over different pairs of
nearest neighbour sites, and the coupling constants

Jij =

{

J > 0 with probability p
0 with probability (1 − p).

(4)

(a) Discuss how this problem is related to percolation theory.

(b) In the following, assume the temperature T = 0.

(i) What is the ground state of the diluted Ising model?

(ii) Show that

〈sisj〉 =

{

1 i, j in the same percolation cluster
0 otherwise.

(5)

(iii) Argue why the average magnetisation per spin m0(p) = 0 for p ≤ pc.
Based on your knowledge of percolation, find an expression for m0(p)
when p > pc.

You may assume that for small non-zero external field H and low temperatures
kBT ≪ J , the magnetisation per spin

m(p, H) = ±P∞(p) +
∞

∑

s=1

sn(s, p) tanh(sH/kBT ), (6)

where n(s, p) is the cluster number density.
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(c) (i) What does the term P∞(p) represent? Find the magnetisation m0(p) in
the limit of H → 0.

(ii) Define the susceptibility χ per spin. Assuming H ≪ kBT , show that the
susceptibility per spin diverges when p → pc.

(d) A version of the fluctuation-dissipation theorem states that

χ =
1

kBT

∑

i

∑

j

(〈sisj〉 − 〈si〉〈sj〉) (7)

where 〈si〉 = 〈sj〉 = m0. Assume p approaches pc from below and kBT ≪ J .
Calculate the susceptibility using this formula and show it is consistent with
the result derived in (c)(ii).

3. Landau theory for the Ising model.

Consider an Ising ferromagnet with spins on a three-dimensional cubic lattice. The
total energy E{si} of the system in an applied external field H is given by

E{si} = −J
∑

〈ij〉

sisj − H

N
∑

i=1

si. (8)

(a) (i) Explain the variable si of the Ising model.

(ii) Give and explain the sign of J suitable for a ferromagnet.

(iii) Explain what the first sum runs over, that is, what does 〈ij〉 signify?

For an Ising ferromagnet at temperature T in an external applied field H , the
Landau free energy density (per spin) is given by

fL(m; T ; H) = f0(T ) + a2(T − Tc)m
2 + a4m

4 − mH (9)

where m = 〈si〉 is the average magnetisation per spin and Tc, a2 and a4 (all positive)
are phenomenological parameters. Consider first the ferromagnet in the absence
of an applied magnetic field, H = 0.

(b) Sketch the magnetisation per spin of the Ising ferromagnet as a function of
temperature. Indicate clearly the behaviour at temperatures T → 0, near
T = Tc, and at high temperatures T ≫ Tc.

(c) Sketch the Landau free energy density fL at H = 0 as a function of m for
the three temperatures: T > Tc, T = Tc and T < Tc. Hence, deduce the
equilibrium magnetisation m0(T ) as a function of temperature T , as predicted
by Landau theory.
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An external field H 6= 0 is applied to the ferromagnet parallel to the spin axis.

(d) Sketch the magnetisation per spin m as a function of the applied field H in
the range −∞ < H < ∞ for two temperatures: T > Tc and T < Tc. Indicate
clearly the behaviour near zero field and at high fields. Hint: make sure your
answer here is consistent with your answer to part (b).

One version of a mean-field theory for the Ising model approximate the total energy

E{si} ≈ −J
∑

〈ij〉

sim − H
N

∑

i=1

si, (10)

where m = 〈sj〉.

(e) (i) Using this approach, write down the self-consistent equation given by
mean-field theory for the magnetisation per spin m at temperature T in
non-zero external field H in a three-dimensional cubic lattice.

(ii) Give a physical picture to explain your equation and its relationship with
the magnetisation of a single spin in a field H :

m = tanh

(

H

kBT

)

(11)

where H is expressed in the same units as in Eq. (8).

4



Problem sheet 9 issued: Tuesday 3rd December 2013

Solutions available from: Wednesday 11th December 2013

Statistical Mechanics Answer Sheet 9

1. Scaling ansatz of free energy per spin and scaling relations. (RF Question)

(a) Consider the Ising model on a d-dimensional lattice in an external field H .

(i) The total energy for a system of N spins si = ±1 with constant nearest-
neighbour interactions J > 0 placed in a uniform external field H is

E{si} = −J
∑

〈ij〉

sisj − H
N
∑

i=1

si, (1)

where the notation 〈ij〉 restricts the sum to run over all distinct nearest-
neighbour pairs.

(ii) Let M{si} =
∑N

i=1 si denote the total magnetisation and 〈M〉 the average
total magnetisation. The order parameter for the Ising model is defined
as the magnetisation per spin

m(T, H) = lim
N→∞

〈M〉

N
. (2)

Consider the free energy F = 〈E〉−TS. The ratio of the average total en-
ergy, 〈E〉, to the temperature times entropy, TS, defines a dimensionless
scale J/(kBT ). A competition exists between the tendency to randomise
the orientation of spins for J ≪ kBT , and a tendency to align spins for
J ≫ kBT . In the former case, the free energy is minimised by maximising
the entropic term: the magnetisation is zero because the spins point up
and down randomly. In the latter case, the free energy is minimised by
minimising the total energy: the magnetisation is non-zero because the
spins tend to align. Since the entropy in the free energy is multiplied by
temperature, for sufficiently low temperatures, the minimisation of the
free energy is dominated by the minimisation of the total energy. There-
fore, at least qualitatively, there is a possibility of a phase transition from
a phase with zero magnetisation at relatively high temperatures, to a
phase with non-zero magnetisation at relatively low temperatures.
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We assume that the singular part of free energy per spin is a generalised homoge-
neous function,

f(t, h) = b−df(bytt, byhh) for t → 0±, h → 0, ∀ b > 0. (3)

(b) Below, we use the notation ∂f
∂t

= f ′
t and ∂2f

∂t2
= f ′′

tt and similar for partial
derivatives w.r.t. h.

(i) The critical exponent α associated with the specific heat in zero external
field characterises its divergence as t → 0 and is defined by

c(t, 0) ∝ |t|−α for t → 0. (4)

The specific heat is related to the free energy per spin:

c(t, h) ∝

(

∂2f

∂t2

)

∝ b2yt−df ′′
tt(b

ytt, byhh). (5)

Choosing b = |t|−1/yt and setting h = 0 we find

c(t, 0) ∝ |t|
−

2yt−d

yt f ′′
tt(±1, 0) for t → 0±, (6)

and since f ′′
tt(±1, 0) are just numbers, we identify

α =
2yt − d

yt
. (7)

(ii) The critical exponent β associated with the order parameter (magnetisa-
tion per spin) in zero external field characterises the pick up of the order
parameter as t → 0− and is defined by

m(t, 0) ∝ |t|β for t → 0−. (8)

The magnetisation per spin is related to the free energy per spin:

m(t, h) ∝ −

(

∂f

∂h

)

∝ byh−df ′
h(b

ytt, byhh). (9)

Choosing b = |t|−1/yt and setting h = 0 we find

m(t, 0) ∝ |t|
d−yh

yt f ′
h(−1, 0) for t → 0−, (10)

and since f ′
h(−1, 0) is just a number, we identify

β =
d − yh

yt

. (11)
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(iii) The critical exponent γ associated with the susceptibility in zero external
field characterises its divergence when t → 0 and is defined by

χ(t, 0) ∝ |t|−γ for t → 0. (12)

The susceptibility is related to the free energy per spin:

χ(t, h) ∝ −

(

∂2f

∂h2

)

∝ b2yh−df ′′
hh(b

ytt, byhh). (13)

Choosing b = |t|−1/yt and setting h = 0 we find

χ(t, 0) ∝ |t|
−

2yh−d

yt f ′′
hh(±1, 0) for t → 0 (14)

and since f ′′
hh(±1, 0) are just numbers, we identify

γ =
2yh − d

yt
. (15)

(iv) The critical exponent δ associated with the order parameter at the critical
temperature characterises how the magnetisation per spin vanishes for
small external fields and is defined by

m(0, h) ∝ sign(h)|h|1/δ for h → 0±. (16)

The magnetisation per spin is related to the free energy per spin:

m(t, h) ∝ −

(

∂f

∂h

)

∝ byh−df ′
h(b

ytt, byhh). (17)

Choosing b = |h|−1/yh and setting t = 0 we find

m(0, h) ∝ |h|
d−yh

yh f ′
h(0,±1) for h → 0 (18)

and since f ′
h(0,±1) are just numbers, we identify

δ =
yh

d − yh

. (19)

(v) We find

α + 2β + γ =
2yt − d + 2d − 2yh + 2yh − d

yt

= 2
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and

β(δ − 1) =
d − yh

yt

(

yh

d − yh
− 1

)

=
d − yh

yt

(

2yh − d

d − yh

)

=
2yh − d

yt

= γ.

2. One-dimensional Ising model with periodic boundary conditions (Exam 2007)

(a) The total energy for a system of N spins si = ±1 with constant nearest-
neighbour interactions J > 0 placed in a uniform external field H is

E{si} = −J
∑

〈ij〉

sisj − H

N
∑

i=1

si,

= −J

N
∑

i=1

sisi+1 − H

N
∑

i=1

si. (20)

The sum over all distinct nearest-neighbour pairs 〈ij〉 reduces to the sum over
all spins in d = 1 with sN+1 = s1.

(b) (i) At T = 0 all spins are aligned. Hence there are 2 microstates with all
spins pointing up or all spins pointing down.

(ii) When T → ∞ all spins are pointing up and down at random without any
correlations. Hence there are a total of 2N microstates.

(iii) The total energy E{si} = −J
∑N

i=1
sisi+1 in zero external field. At T = 0

all spins are aligned. At T = ∞ spins are pointing up and down at
random. Hence, the energy per spin

ǫ(T, 0) =
〈E〉

N
=

{

−J at T = 0,

0 for T → ∞.
(21)

(iv) The magnetisation per spin

m(T, 0) =
〈M〉

N
=

{

±1 at T = 0,

0 for T → ∞
(22)

since at T = 0 all spins are aligned while at T = ∞ spins are pointing up
and down at random.
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(v) The entropy S = kB ln Ω where Ω is the number of microstates. Hence

S(T, 0) =

{

kB ln 2 for T = 0,

NkB ln 2 for T → ∞.
(23)

You may also arrive at the same result using

S(T, 0) = −kB

∑

{si}

p{si} ln p{si}, (24)

where p{si} is given by the Boltzmann distribution

p{si} =
exp

(

−βE{si}

)

∑

{si}
exp

(

−βE{si}

) , (25)

with β = 1/(kBT ) the ‘inverse temperature’.

For T → 0, only the two ground states will have a non-zero probability
and p{si=+1∀i} = p{si=−1∀i} = 1/2. Hence

S(0, 0) = −kB

∑

{si}

p{si} ln p{si} = −kB

(

1

2
ln

1

2
+

1

2
ln

1

2

)

= kB ln 2. (26)

For T → ∞, β → 0 and all 2N microstates have equal probability with
p{si} = 2−N . Hence

S(∞, 0) = −kB

∑

{si}

p{si} ln p{si} = −kB2N2−N ln 2−N = NkB ln 2. (27)

(vi) The total free energy 〈F 〉 = 〈E〉 − TS. Hence, using the results of (iii)
and (v) we find that the free energy per spin

f(T, 0) =
F

N
=

{

−J − 1
N

kBT ln 2 for T = 0,

−kBT ln 2 for T → ∞.
(28)

(c) The magnetisation per spin

m(T, H) =
sinh βH

√

sinh2 βH + exp(−4βJ)
, (29)

where β = 1/(kBT ) and J > 0 the coupling constant. We note that sinh βH →
0 for H → 0±.

When T > 0, the term exp(−4βJ) is finite and hence limH→0 m(T, H) = 0.

When T = 0, the term exp(−4βJ) is zero and hence limH→0± m(0, H) = ±1.

Hence there is no phase-transition in the Ising model in zero external field at
any finite temperature.
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3. One-dimensional Ising model with periodic boundary conditions (Exam 2010)

(a) The partition function for the d = 1 Ising model:

Zring =
∑

{si}

e−βE{si}

=
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

eβJs1s2eβJs2s3 . . . eβJsN−1sN eβJsNs1 (30)

where β = 1/(kBT ) with kB the Boltzmann constant and T the temperature.

(b) Using the notation of the transfer matrix, we find

Zring =
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

eβJs1s2eβJs2s3 . . . eβJsN−1sN eβJsNs1

=
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

Ts1s2
Ts2s3

. . . TsN−1sN
TsNs1

=
∑

s1=±1

∑

s3=±1

. . .
∑

sN−1=±1

(

∑

s2=±1

Ts1s2
Ts2s3

)

. . .

(

∑

sN=±1

TsN−1sN
TsNs1

)

=
∑

s1=±1

∑

s3=±1

. . .
∑

sN−1=±1

T 2
s1s3

T 2
s3s5

. . . T 2
sN−3sN−1

T 2
sN−1s1

=
∑

s1=±1

∑

s5=±1

. . .
∑

sN−3=±1

T 4
s1s5

T 4
s5s9

. . . T 4
sN−3s1

=
∑

s1=±1

TN
s1s1

= Tr
(

TN
)

, (31)

where we use the (general) fact of matrix multiplication
∑

sk

Tsisk
Tsksj

= T 2
sisj

. (32)

(c) The transfer matrix in zero external field (H = 0) is

T =

(

T+1+1 T+1−1

T−1+1 T−1−1

)

=

(

eβJ e−βJ

e−βJ eβJ

)

. (33)

The eigenvalues λ± of T are the solutions to the characteristic equation

det(T − λI) = 0. (34)

The determinant

det(T − λI) =

∣

∣

∣

∣

eβJ − λ e−βJ

e−βJ eβJ − λ

∣

∣

∣

∣

= λ2 − 2eβJλ + e2βJ − e−2βJ (35)
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so the solutions to the characteristic Equation (34) are

λ± =
2eβJ ±

√

4e2βJ − 4[e2βJ − e−2βJ ]

2
= eβJ ± e−βJ

=

{

2 cosh βJ,

2 sinh βJ.
(36)

Hence, the partition function

Zring = λN
+ + λN

−

= (2 cosh βJ)N + (2 sinh βJ)N

= (2 cosh βJ)N [1 + tanhN βJ
]

. (37)

(d) In the high-temperature limit
βJ ≪ 1. (38)

Taylor expansion to first order yields cosh βJ ≈ 1 and tanh βJ ≈ βJ so that
the partition function

Zring = (2 coshβJ)N [1 + tanhN βJ
]

≈ 2N
[

1 + (βJ)N
]

≈ 2N (39)

because (βJ)N ≪ 1. Hence, the total free energy of the system

Fring = −kBT ln Zring

≈ −kBT ln 2N

= −TNkB ln 2

= −TS, (40)

where the entropy is given by

S = kB ln 2N , (41)

and also given by

S = −kB

∑

{si}

p{si} ln p{si}, (42)

with

lim
T→∞

p{si} = lim
T→∞

e−βE{si}

∑

{si}
e−βE{si}

=
1

2N
. (43)
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The N spins are effectively free spins because the thermal energy kBT is
much larger than the energy 2J it costs to one flip from a ↑↑ to a ↑↓ local
configuration. Therefore the free energy is just entropic with −TkB ln 2 per
spin.

(e) (i) Assume extremely low temperature with βJ ≫ 1. Using that

2 cosh x = ex + e−x ≈ ex for x ≫ 1, (44a)

2 sinh x = ex − e−x ≈ ex for x ≫ 1, (44b)

we find that the partition function

Zring = (2 cosh βJ)N + (2 sinh βJ)N

≈ eNβJ + eNβJ

= 2eNβJ . (45)

Hence the total free energy

Fring = −kBT ln Zring

≈ −kBTNβJ − kBT ln 2

= −NJ − kBT ln 2. (46)

(ii) Recall that F = 〈E〉 − TS. Hence, we identify the first term, −NJ as
the energy of the ground state where all spins are aligned at T = 0.
The second term, −kBT ln 2, tells us that the entropy is kB ln 2 at low
temperatures. This is because there are two degenerate ground states, all
spins pointing up or all spins pointing down.

4. Ising model in d > 1 (Exam 2006)

(a) (i) The total energy for a system of N spins si = ±1 with constant nearest-
neighbour interactions J > 0 placed in a uniform external field H is

E{si} = −J
∑

〈ij〉

sisj − H

N
∑

i=1

si, (47)

where the notation 〈ij〉 restricts the sum to run over all distinct nearest-
neighbour pairs.

(ii) Spins interact only with their nearest neighbours. The interaction strength
is assumed to be a constant. The spins can only take one of two values
si = ±1. Finally, the external field H is constant.

(b) (i) The free energy per spin

f(T, H) = −
1

N
kBT ln Z. (48)
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(ii) The average magnetisation per spin

m(T, H) =

〈

1

N

N
∑

i=1

si

〉

. (49)

The statistical mechanical definition of the free energy yields

−

(

∂f

∂H

)

T

=
1

N
kBT

∂

∂H
ln Z

=
1

N
kBT

1

Z

∂

∂H
Z

=
1

N
kBT

1

Z

∂

∂H

∑

{si}

exp(−βE{si})

=
1

Z

∑

{si}

exp(−βE{si})
1

N

N
∑

i=1

si

=
1

Z

∑

{si}

exp(−βE{si})m{si} (50)

which is indeed the average magnetisation per spin.

(c) For T ≥ Tc, the spins are equally likely to be pointing up and down on average
so the magnetisation per spin is zero. The magnetisation picks up abruptly
at T = Tc and for T < Tc a finite fraction of the spins are aligned. At T = 0,
all spins point in the same direction. Hence, m(0, 0) = ±1.

(d) (i) The average magnetisation per spin is

m(T, H) = −

(

∂f

∂H

)

T

. (51)

Hence, for fixed temperature, T , the magnetisation per spin is the neg-
ative slope of the free energy per spin as a function of the external field
H .

(ii) Clearly T > Tc has zero slope at H = 0. For T < Tc the slope is finite
and take the same numerical value for H → 0± but with different sign.
At T = Tc, the slope is also zero but the second derivative (susceptibility)
diverges, that is, the rate of change in the slope is infinite.
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T/Tc

m0(T ) = lim
H→0±

m(T, H)

0

1

−1

10

Figure 1: A sketch of the magnetisation per spin m0(T ) = lim
H→0±

m(T, H) versus the

relative temperature T/Tc for the Ising model.
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Tuesday 3rd December 2013

Hand in to UG office by 14:00 on Monday 9th December

Marked work available in UG office by 12:00 on Wednesday 11th December

RF class at 12:00 on Wednesday 11th December

Statistical Mechanics Problem Sheet 9

1. Scaling ansatz of free energy per spin and scaling relations. (RF Question)

Consider the Ising model on a d-dimensional lattice in an external field H .

(a) (i) Write down the energy E{si} for the Ising model. Clearly identify all
symbols.

(ii) Identify the order parameter for the Ising model and discuss qualitatively
its behaviour as a function of temperature T in zero external field.

Let t = (T − Tc)/Tc and h = H/(kBT ) denote the reduced temperature and
external field, respectively. Assume that the singular part of free energy per spin
is a generalised homogeneous function,

f(t, h) = b−df(bytt, byhh) for t → 0±, h → 0, ∀ b > 0, (1)

where d is the dimension and yt, yh are positive exponents.

(b) (i) Define the critical exponent α associated with the specific heat in zero
external field and show that Equation (1) implies

α =
2yt − d

yt

. (2)

(ii) Define the critical exponent β associated with the order parameter in zero
external field and show that Equation (1) implies

β =
d − yh

yt

. (3)

(iii) Define the critical exponent γ associated with the susceptibility in zero
external field and show that Equation (1) implies

γ =
2yh − d

yt

. (4)
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(iv) Define the critical exponent δ associated with the order parameter at the
critical temperature and show that Equation (1) implies

δ =
yh

d − yh

. (5)

(v) Hence confirm the two scaling relations

α + 2β + γ = 2, (6a)

γ = β(δ − 1). (6b)

2. One-dimensional Ising model with periodic boundary conditions (Exam 2007)

Consider the d = 1 Ising model with N spins in an external field H .

(a) Write down the total energy E{si} for the one-dimensional Ising model with
periodic boundary conditions. Identify clearly all the terms and discuss briefly
the approximations entering into the Ising model.

Now consider the one-dimensional Ising model in zero external field H = 0.

(b) (i) Describe the microstates at zero temperature, T = 0. How many different
microstates are there at T = 0?

(ii) Describe the microstates in the limit of infinite temperature, T → ∞.
How many different microstates are there when T → ∞?

(iii) What is the energy per spin

〈E〉

N
=

{

? at T = 0

? for T → ∞
(7)

of the one-dimensional Ising model? Explain your answers.

(iv) What is the magnetisation per spin

m(T, 0) =
〈M〉

N
=

{

? at T = 0

? for T → ∞
(8)

of the one-dimensional Ising model? Explain your answers.

(v) What is the (total) entropy

S(T, 0) =

{

? at T = 0

? for T → ∞
(9)

of the one-dimensional Ising model? Explain your answers.
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(vi) What is the free energy per spin

f(T, 0) =
F

N
=

{

? at T = 0

? for T → ∞
(10)

of the one-dimensional Ising model? Explain your answers.

(c) Exact solution of the one-dimensional Ising model in a non-zero external field
yields

m(T, H) =
sinh βH

√

sinh2 βH + exp(−4βJ)
, (11)

for the magnetisation per spin where β = 1/(kBT ) and J > 0 the coupling
constant. Discuss the possibility of a phase-transition in the one-dimensional
Ising model in zero external field.

3. One-dimensional Ising model with periodic boundary conditions (Exam 2010)

Consider the Ising model for a ring of N sites with periodic boundary conditions.
Because sN+1 = s1, then in the absence of an external field, the total energy of the
system is given by:

E{si} = −J

N−1
∑

i=1

sisi+1 − JsNs1 (12)

where the spin si at site ri may take on the values ±1.

(a) Write down the partition function Zring of this system at temperature T as a
sum over all possible spin configurations of the chain of N spins.

(b) Show that this partition function can be written in the form Zring = Tr
(

TN
)

with the transfer matrix T whose elements are:

Ts,s′ = eβJss′ (13)

where s, s′ = ±1 and β = 1/(kBT ) with kB being the Boltzmann constant.

(c) Show that the partition function is given by:

Zring = (2 cosh βJ)N
[

1 + tanhN (βJ)
]

. (14)

You may use the fact that Tr
(

TN
)

= λN
+ + λN

− where λ+ > λ− are the two
eigenvalues of the transfer matrix T.

(d) The total free energy of the system is given by Fring = −kBT ln Zring. Derive
the total free energy Fring in the high-temperature regime. You only need to
give the leading term for Fring in this regime. You should give an inequality
defining the high-temperature regime and give a physical interpretation.
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(e) Consider the system at a fixed and finite N in the regime of extremely low
temperatures: βJ ≫ 1 and N ≪ 1/ ln (tanhβJ).

(i) Show that
Fring ≈ −NJ − kBT ln 2 (15)

in this low-temperature regime.

(ii) Give a physical interpretation of the two terms in the form of the free
energy given by Eq. (15)

4. Ising model in d > 1 (Exam 2006)

Consider an Ising model in dimension d > 1.

(a) (i) Write down the total energy E{si} for the Ising model with N spins in an
external field H . Clearly identify all symbols.

(ii) Discuss the simplifications entering into the Ising model.

(b) The partition function is given by Z =
∑

{si}

exp
(

−βE{si}

)

where β = 1/(kBT )

is the inverse temperature.

(i) Express the free energy per spin f(T, H) in terms of the partition function.

(ii) Define the average magnetisation per spin m(T, H) for the Ising model
and prove that

m(T, H) = −

(

∂f

∂H

)

T

. (16)

(c) Make a sketch of the average magnetisation per spin in zero external field,
m0(T ) = lim

H→0±
m(T, H) as a function of temperature, T . Comment on your

sketch to emphasize relevant and characteristic features.

(d) Figure 1 below displays the free energy per spin, f(T, H), as a function of
external field for, H , for three temperatures T > Tc, T = Tc and T < Tc.

(i) How can you determine the average magnetisation per spin graphically
from Fig. 1?

(ii) Consider the average magnetisation per spin in the limit H → 0±. Ex-
plain whether your sketch in sub-question (c) is qualitatively consistent
with the average magnetisation per spin lim

H→0±
m(T, H) determined from

Fig. 1.
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Figure 1: The free energy per spin, f(T, H), versus the external field, H , for temper-
atures T > Tc (lower graph) T = Tc (middle graph) and T < Tc (upper graph).
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