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Exercise 1. Classical ideal paramagnet

We consider an ideal paramagnet of magnetic moments in a magnetic field. The magnetic
moments have only two orientations, parallel and antiparallel to the magnetic field. The Hamil-
tonian of the system is given by

H = −

N
∑

i=1

miH , (1)

with mi = ±m, H as the magnetic field and N the number of magnetic moments.

a) Calculate the internal energy, entropy, magnetization and magnetic susceptibility using
the micro-canonical ensemble. Hint: Use combinatoric relation for binomial systems to
determine the micro-canonical phase space count.

Solution. We define the magnetization M = nmH, with n = n+−n− and N = n++n−, such that n± =
N±n

2
. The (discrete) phase space area is then the number of combinations of moments that give the same

magnetization, so Ω(n) = N !
n+!n

−
!
. We now use the Stirling’s approximation ln(N !) = N lnN−N+O(lnN)

and ignore terms of order logN .

log Ω(n) = log(N !)− log(n+!)− log(n−!)

≈ N(logN − 1)− N + n

2

(

log

(

N + n

2

)

− 1

)

− N − n

2

(

log

(

N − n

2

)

− 1

)

,

where we neglected the term 1
2
log(π2(N2 − n2)). The entropy then reads:

S = kB log Ω(n) = 2NkB log(2)− NkB
2

((

1 +
n

N

)

log
(

1 +
n

N

)

+
(

1− n

N

)

log
(

1− n

N

))

(S.1)

From the differential dS = (1/T )dU + (M/T )dH we can obtain the temperature, as follows. We insert
n = − E

Hm
to get S(E,H) and differentiate keeping n explicitly:

1

T
=

(

∂S

∂E

)

H

=

(

∂n

∂E

)

H

∂S

∂n
= − 1

Hm

∂S

∂n

=
NkB
2Hm

(

1

N
log

(

1 +
n

N

)

− 1

N
log

(

1− n

N

)

+
1

N
− 1

N

)

=
kB

2Hm
log

(

N + n

N − n

)

= − kB
2Hm

log

(

NHm+ E

NHm− E

)

.

Inverting the above equation yields E = −NHm tanh(βmH), with β = 1/(kBT ). In order to obtain the
magnetization we first calculate the partial derivative

(

∂S

∂H

)

E

=

(

∂n

∂H

)

E

∂S

∂n
= − E

H2m

∂S

∂n
=

EkB
2H2m

log

(

NHm+ E

NHm− E

)

,

and then

M = T

(

∂S

∂H

)

E

= −E

H
= Nm tanh

(

βmH). (S.2)

The susceptibility reads:

χH =

(

∂M

∂H

)

=
Nm2β

cosh2(βmH)
. (S.3)

It is useful to study the magnetization and the susceptibility in the two regimes βmH ≫,≪ 1 (see Fig. 1).
When βmH ≪ 1 (small field and/or large temperature limit) tanhx ≈ x−O(x3) and coshx ≈ 1 +O(x2)
such that the magnetization grows linearly in the field, i.e., according to the Curie law of independent
moments

M ≈ Nm2βH = χH with χH ≈ Nm2β = χ. (S.4)
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Figure 1: Magnetization (S.2) as a function of magnetic field strength H scaled to kBT . The dashed
(solid) line is the asymptote at small (large) field (m = 1).

When βmH ≫ 1 (large field and/or small temperature limit) tanhx ≈ 1 − e−2x and the magnetization
tends to saturate, i.e.,

M ≈ mN(1− 2e−2βmH). (S.5)

It is also interesting to consider the heat capacity for constant external field H. From dU =
(

∂U
∂T

)

H
dT +

(

∂U
∂H

)

T
dH and dM =

(

∂M
∂T

)

H
dT +

(

∂M
∂H

)

T
dH such that

δQ = dU − δW = dU −HdM =
[

(

∂U

∂T

)

H

−H

(

∂M

∂T

)

H

]

dT +
[

(

∂U

∂H

)

T

−H

(

∂M

∂T

)

T

]

dH. (S.6)

The heat capacity at fixed H is then given by:

CH =

(

∂U

∂T

)

H

−H

(

∂M

∂T

)

H

= 2
NkB(βHm)2

cosh2(βmH)
, (S.7)

where we used ∂T f(β) = −kBβ
2∂βf(β). Note that both the susceptibility and the heat capacity are

exponentially suppressed at low temperature ∼ T−αe−2Hm/kBT with α = 1, 2, which is indicating a
freezing of the degrees of freedom.

b) Calculate the internal energy, entropy, magnetization and magnetic susceptibility using
the canonical ensemble.

Solution. In order to determine the thermodynamics of the ideal paramagnet in the canonical ensemble,
we calculate the partition function:

Z =

N
∏

i=1

[

∑

σ=±

e−βHmσ
]

=
[

2 cosh(βmH)
]N

= ZN
m . (S.8)

We can now easily calculate all the thermodynamic functions, e.g, the free energy:

F (T,H,N) = − 1

β
lnZ = −kBTN lnZm (S.9)

and the internal energy
U(T,H,N) = −∂β lnZ = −NmH tanh(βmH). (S.10)

From the free energy (S.9) we obtain the magnetization and the susceptibility, which are equal to the micro

canonical case (S.2), (S.3).

Exercise 2. Classical ideal lattice gas

We consider N1 particles on a lattice of N sites (N = N1 +N2), which have the condition that
only one particle can occupy a site at a time. We assume that the particles have the energy EA

on N1 sites and EB on the other N2 sites. Consider the situation that N1 < N2 and analyse the
following situations in both the micro-canonical and canonical ensemble.
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a) The energies satisfy EA < EB.

b) The energies satify EA > EB.

c) Vary the energies continuously between case a) and b).

Solution. Microcanonical case We need to calculate the number of microscopic realizations that yields the same
energy

E = NAEA +NBEB (S.11)

with NA(B) the number of particles on the sites with energy EA(B). Note, that NA ≤ N1, and

N1 = NA +NB . (S.12)

At zero temperature, as N1 ≤ N2 we expect that when EA < EB , NA = N1 with zero entropy, as there is only one
configuration possible (all atoms sitting on the NA sites). On the other hand, when EA > EB , it will be favourable
for the system to occupy the B sites, i.e., NA = 0 and since N2 > N1 the number of allowed configurations will
be larger than 1 and the residual entropy non zero. More quantitatively,

Ω = ΩAΩB =
N1!

(N1 −NA)!NA!

N2!

(N2 −NB)!NB !
=

N1!

(N1 −NA)!NA!

(N −N1)!

(N +NA)!(N1 −NA)!
, (S.13)

where we used N = N1 +N2 and N1 = NA +NB . We immediately see that when NA = N1 , NB = 0 and Ω = 1,
while when NA = 0 Ω = ΩB > 1. The entropy reads:

S = kB lnΩ = kB
[

N1 lnN1+2N1−2(N1−NA) ln(N1−NA)−NA lnNA+(N−N1) ln(N−N1)−(N+NA) ln(N+NA)
]

.
(S.14)

In order to obtain the temperature, we write

1

T
=

∂S

∂E
=

∂NA

∂E

∂S

∂NA
=

1

EA − EB

∂S

∂NA
, (S.15)

such that
1

T
=

kB
EA − EB

[

2 ln(N1 −NA)− ln(N +NA)− lnNA

]

(S.16)

which implies
(N1 −NA)

2

NA(N +NA)
= e−β(EB−EA). (S.17)

At zero T , when EA < EB the R. H. S. of the equation above is zero and this can only be satisfied when N1 = NA.
On the other hand, when EA > EB the R. H. S. diverges, implying NA = 0. Therefore, the distribution NA(EA)
goes from N1 when EA < EB to zero when EA > EB in a step-like fashion at zero temperature. For larger T ,
the step is smeared out over an energy interval ∼ kBT .

Canonical case It is straightforward to write the partition function in the following way:

Z = (1 + e−β(EA−µ))N1(1 + e−β(EB−µ))N2 (S.18)

as each one among the N1,2 sites can be either occupied or empty. The quantity µ fixes the particle number
and results from the shifting of the Hamiltonian H = HA +HB → H = HA +HB − µ(NA + NB) = H̃A + H̃B .
Therefore, the internal energy reads:

U = −∂β lnZ = N1EA
ze−βEA

1 + ze−βEA

+N2EB
ze−βEB

1 + ze−βEB

= NAEA +NBEB , (S.19)

with z = exp(βµ). From the last equivalence, we obtain

NA = (N1 −NA)ze
−βEA and NB = (N2 −NB)ze

−βEB (S.20)

such that
NB(N1 −NA)

NA(N2 −NB)
= e−β(EB−EA). (S.21)

Again, at zero T , when EA < EB the R. H. S. of the equation above is zero and this implies N1 = NA, i.e.,
all particles are in the A sites. On the other hand, when EA > EB the R. H. S. diverges, implying NA = 0 or
N2 = NB . Since N1 < N2 it can only be NA = 0. Alternatively, one could obtain the Boltzmann factors (S.20) by
maximizing the phase space count (S.13) with respect to NA with the energy (S.11) and particle number (S.12)
constraints imposed through Lagrange multipliers. The multiplier β fixing the total energy can be shown to be
equal to the inverse temperature via the thermodynamic relation

1

T
=

dS

dE
=

∂S

∂NA

∂NA

∂E
+

∂S

∂NB

∂NB

∂E
= kBβ. (S.22)
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Exercise 3. Classical ideal gas in a harmonic trap

We consider independent classical particles in a harmonic trap described by the Hamiltonian,

H =
∑

i

{

~p2
i

2m
+ a~r2i

}

. (2)

a) Assume N particles and discuss the system in the micro-canonical ensemble.

Solution. In the microcanonical ensemble, the connection to thermodynamics is provided through the
phase space volume

Φ(E) = ΛN

∫

H(p,q)≤E

dp dq, (S.23)

with

H(p, q) =

N
∑

i=1

[

~p 2
i

2m
+ a~q 2

i

]

. (S.24)

We perform the rescaling, Pi = pi/
√
2m and Qi = qi

√
a, such that the Hamiltonian is simplified

H(P,Q) =
N
∑

i=1

[

~P 2
i + ~Q 2

i

]

(S.25)

as well as the phase space integral

Φ(E) = ΛN

(

2m

a

)3N/2 ∫

H(P,Q)≤E

dP dQ, (S.26)

since dp =
∏N

i=1 d
3pi and dq =

∏N
i=1 d

3qi. We then need to calculate, as already explained in the lecture,
the volume of a sphere in 6N dimensional space, i.e.,

Φ(E) = ΛN

(

2m

a

)3N/2

C6NE3N , (S.27)

with

Cn =
πn/2

Γ(n
2
+ 1)

. (S.28)

In order to obtain the thermodynamics, we can then refer to the lecture, with the substitutions 2m → 2m/a
and E3N/2 → E3N , i.e., the entropy

S(E,N) = NkB ln
[ 1

N

(

√

2m

a

πE

3Nh

)3]

+ 4NkB . (S.29)

Inverting the above relation we find:

U(S,N) = E =
3N4/3h

π

√

a

2m
exp

[ S

3NkB
− 4/3

]

(S.30)

such that the equation of state can be obtained as follows,

T =

(

∂U

∂S

)

N

=
U

3NkB
→ U = 3NkBT, (S.31)

which expresses the equipartition law.

b) Assume N particles and discuss the system in the canonical ensemble.
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Solution. Within the canonical ensemble, we need again to calculate the partition function. It reads:

Z = ΛN

∫

dp dq e−βH(p,q) = ΛN

[

N
∏

i=1

∫

d3pie
−βp2

i
/2m

][

N
∏

i=1

∫

d3qie
−βa~q 2

i

]

=

= ΛN

[
∫

dxdydz e−β(x2+y2+z2)/2m

]N [
∫

dxdydz e−aβ(x2+y2+z2)

]N

=

= ΛN

(

2m

a

)3N/2

[πkBT ]
3N .

(S.32)

We can then obtain all thermodynamic functions, as in Ex. 1, e.g., the free energy:

F (T,N) = − 1

β
lnZ = −NkBT ln

[ 1

N

(

√

2m

a

πkBT

h

)3]

−NkBT (S.33)

and the caloric equation of state,

U(T,N) = −∂β lnZ = 3NkBT. (S.34)

c) Assume a constant chemical potential µ and discuss the system in the grand canonical
ensemble. Note the differences. How would you determine/define compressibility?

Solution. In the grand-canonical ensemble, the thermodynamics for fixed chemical potential µ and vary-
ing particle number N is given through the grand partition function,

Z =
∞
∑

N=0

zNZN , (S.35)

with the fugacity z = exp(βµ), while ZN is the partition function of the corresponding canonical ensemble
(S.32), i.e., with given N . We then obtain:

Z =

∞
∑

N=0

1

N !h3N
eβµN

[

√

2m

a

πkBT

h

]3N

=

∞
∑

N=0

1

N !

[

eβµ
(

√

2m

a

πkBT

h

)3
]N

=

=exp

[

eβµ
(

√

2m

a

πkBT

h

)3
]

.

(S.36)

We are then able to calculate all thermodynamic functions, i.e., the grand potential

Ω(T, V, µ) = −pV = − 1

β
lnZ = −eβµ

(

√

2m

a

π

h

)3
(kBT )

4. (S.37)

In order to define compressibility, we exploit the Gibbs-Duhem relation

G(T, p,N) = µN → SdT − V dp+Ndµ = 0, (S.38)

where G is the Gibbs free energy. We can then write:

dµ = vdp− S

N
dT →

(

∂µ

∂v

)

T

= v

(

∂p

∂v

)

T

, (S.39)

where v = V/N . One then obtains

(

∂µ

∂v

)

T

=

(

∂N

∂v

∂µ

∂N

)

T

= −N2

V

(

∂µ

∂N

)

T

(S.40)

while for the R.H.S. of (S.39)
(

∂p

∂v

)

T

=

(

∂V

∂v

∂p

∂V

)

T

= N

(

∂p

∂V

)

T

(S.41)

such that one can conclude:

−N2

V

(

∂µ

∂N

)

T

= V

(

∂p

∂V

)

T

→ N

(

∂µ

∂N

)

T

= −vV

(

∂p

∂V

)

T

. (S.42)
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According to the definition of isothermal compressibility,

κT = − 1

V

(

∂V

∂p

)

T

, (S.43)

that quantifies the normalized reduction in volume when changing the pressure at fixed temperature, we
obtain:

κT =
v

N

(

∂N

∂µ

)

T

. (S.44)

In the grand-canonical ensemble, we replace N with 〈N〉, which can be calculated as follows:

〈N〉 = z∂z lnZ = lnZ = −Ωβ. (S.45)

Therefore,

κT =
v

〈N〉

(

∂z

∂µ

∂〈N〉
∂z

)

T

=
v

z

∂z

∂µ
= vβ. (S.46)
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Statistical Physics.

Solutions Sheet 2.

HS 2013
Prof. Manfred Sigrist

Exercise 1. The Classical Ideal Paramagnet Reloaded.

Consider a lattice of N noninteracting particles, each possessing a magnetic moment ~mi of fixed
magnitude m which can point in any spacial direction. (This changes from last week’s exercise,
where mi = ±m.) The Hamiltonian is, as you might have guessed,

H = −
∑

i

~mi · ~H , (1)

where ~H is the externally applied magnetic field, assumed homogeneous and in the Z direction.

(a) Calculate the canonical partition function Z of the system.

Solution. All magnetic moments are independent, so we can calculate first the partition function Z1 of
a single magnetic moment ~m:

Z1 =

∫

dΩ

4π
eβ ~m· ~H =

∫

dΩ

4π
eβmH cos θ =

1

2

∫ π

0

dθ sin θ eβmH cos θ

=
1

2

∫ π

0

dθ

(

−1

βmH

)

∂

∂θ
eβmH cos θ = −

1

2βmH

[

eβmH cos θ
]π

0
=

sinhβmH

βmH
. (S.1)

The total partition function is then simply

Z =

(

sinhβmH

βmH

)N

. (S.2)

(b) Calculate the free energy F , internal energy U and heat capacity C. Discuss the limiting
cases where kBT ≪ mH and kBT ≫ mH. Calculate the entropy S in those cases.

Solution. Free Energy. The free energy is given by

F = −
1

β
lnZ = −NkBT ln

sinhβmH

βmH
. (S.3)

If kBT ≪ mH (i.e. βmH → ∞), we can approximate sinhβmH ≈ 1
2
eβmH and

F ≈ −NkBT ln
eβmH

2βmH
= −NmH +NkBT ln (2βmH) . (S.4)

If kBT ≫ mH we have βmH → 0 and in this case

F ≈ −NkBT ln
βmH + (βmH)3

3!

βmH
= −NkBT ln

(

1 +
(βmH)2

3!

)

≈ −NkBT
(βmH)2

3!
= −NkBT

1

3!

(

mH

kBT

)2

.

(S.5)

Internal Energy. It is given by

U = −
∂

∂β
N [ln sinhβmH − lnβmH] = −N

[

mH cothβmH −
mH

βmH

]

= NmH

[

1

βmH
− cothβmH

]

.

(S.6)

Heat Capacity. The heat capacity is then

C =
∂U

∂T
= −

1

kBT 2

∂U

∂β
= −

NmH

kBT 2

[

−
1

mHβ2
−

−mH

sinh2 βmH

]

= NkB

(

1−
(βmH)2

sinh2 βmH

)

. (S.7)
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In the case kBT ≪ mH, i.e. βmH → ∞, we have sinhβmH ≈ 1
2
eβmH . Then βmH

sinh βmH
≈ 2βmHe−βmH →

0, such that C → NkB like for an ideal gas (in violation of the third law of thermodynamics1). In the limit
where kBT ≫ mH, we have βmH → 0, in which case sinh (βmH) /βmH → 1 and C → 0.

Entropy. We have S − S0 = −
(

∂F
∂T

)

H,N
. In the regime kBT ≪ mH,

S − S0 = −NkB ln (2βmH)−NkBT

(

∂β

∂T

)

∂

∂β
ln (2βmH) = −NkB ln (2βmH)−NkBT

−1

kBT 2

2mH

2βmH

= −NkB ln (2βmH) +NkB . (S.8)

In the other regime, kBT ≫ mH, we have

S − S0 =
NkB
3!

(

mH

kBT

)2

+
NkBT

3!
2

(

mH

kBT

)

−mH

kBT 2
= −

NkB
3!

(

mH

kBT

)2

. (S.9)

(In case you had your doubts, you do indeed get the same expressions for the entropy in these limiting
cases if you started off from (S.3), calculated the entropy in general and then looked at the limiting cases.)

(c) If Mz is the thermodynamic variable corresponding to magnetization, show that

Mz = −

(

∂F

∂Hz

)

T,N

. (2)

Hint. Remember that in the thermodynamics of magnetic systems, H and M replace respectively

variables p and V as conjugate variables.

A Note: Which differential to use?

In the beginning of the course “Theory of Heat” we derived the (correct) differential dU = TdS +HdM ,
which corresponds to fixing the (extensive) variable M (the magnetization). This relates well to the
mechanical case with the analogies −p ↔ H and V ↔ M .

However, in “reality” it is much more convenient to fix the (intensive) external magnetic field H. This
corresponds to the enthalpy H, which is the Legendre transform of the internal energy

dH = dU − d(HM) = TdS −MdH . (S.10)

That means, what we identify with the energy in the microcanonical treatment (when fixing the magnetic
field) is in fact the enthalpy H (instead of the internal energy U) and the canonical treatment technically
leads to the Gibbs free energy G (instead of the Helmholtz free energy F ).

However, we do not want to change all these relations, so we just “redefine” the differential of the internal
energy to

dU = TdS −MdH (S.11)

such that we swap H ↔ U and G ↔ F . Then we can keep the usual relations E = U (microcanonical)
and F = kBT log(Z) (canonical).

Solution. We know from thermodynamics that the differential of the internal energy is given by

dU = TdS −MdH + µdN . (S.12)

(Here, we will write for short M ≡ Mz and H ≡ Hz.)

The differential −MdH should be chosen instead of HdM because H is the external parameter that can
be varied, while the magnetization M is the system’s response. (This is like considering the enthalpy of a
gas rather than its internal energy, in case we had control over the pressure and not the volume.)

The free energy is the Legendre transform F = U − TS and its differential is now

dF = −SdT −MdH + µdN , (S.13)

1 The third law of thermodynamics states that the entropy must reach a finite value, conventionally zero, at
zero temperature. This implies that the heat capacity must vanish. This is a well-known problem of the ideal gas
model, for which the entropy diverges at zero temperature and also has a finite heat capacity.

2



from which we can now trivially read out
(

∂F

∂H

)

T,N

= −M . (S.14)

(d) The magnetization in statistical mechanics is given by Mz =
∑

im
z
i . Show explicitly that

〈Mz〉 = −
∂F

∂Hz
. (3)

Calculate the value of 〈Mz〉. In which regime does the system obey Curie’s law?

Solution. We have by definition

〈Mz〉 =
1

Z

∫

dΩ1 . . . dΩN Mz e
−βH(~m1...~mN , ~H) . (S.15)

Because of the form of our Hamiltonian, we have ∂H
∂Hz

= −
∑

i mi,z = −Mz and thus ∂
∂Hz

e−βH = βMze
−βH.

Then

〈Mz〉 =
1

Z

∫

dΩ ′s ·
1

β

∂

∂Hz

e−βH(~m ′s, ~H) =
1

β

1

Z

∂

∂Hz

∫

dΩ ′s e−βH(~m ′s, ~H)

=
1

β

∂

∂Hz

lnZ = −
∂F

∂Hz

, (S.16)

recalling that F = −(1/β) lnZ.

Now (with H ≡ Hz)

〈Mz〉 = NkBT
∂

∂H
(ln sinhβmH − lnβmH) = NkBT

[

coshβmH

sinhβmH
βm−

βm

βmH

]

= Nm

[

cothβmH −
1

βmH

]

. (S.17)

At small fields, or at high temperatures, we have βmH → 0. Because of the series cothx = x−1+ x
3
+O

(

x3
)

,
we have

〈Mz〉 ≈ Nm

[

1

βmH
+

βmH

3
−

1

βmH

]

=
Nm2

3kB

H

T
, (S.18)

which is Curie’s law with the constant K = Nm2

3kB
.

(e) Calculate the fluctuations 〈M2
z 〉 − 〈Mz〉

2 and relate them to the magnetic susceptibility
χzz = (∂Mz/∂Hz).

Solution. In order to calculate the fluctuations, we start off from the definition:

〈Mz〉 =
1

Z

∫

dΩ ′s Mz e
−βH(~m ′s, ~H) =

∫

dΩ ′s Mz e
β(F−H(~m ′s, ~H)) , (S.19)

and notice that

0 =

∫

dΩ ′s (〈Mz〉 −Mz) e
β(F−H(~m ′s, ~H)) . (S.20)

Differentiating (S.20) by Hz,

0 =
∂〈Mz〉

∂Hz

+

∫

dΩ ′s (〈Mz〉 −Mz)
∂

∂Hz

eβ(F−H(~m ′s, ~H)) (S.21)

=
∂〈Mz〉

∂Hz

+

∫

dΩ ′s (〈Mz〉 −Mz)β (−〈Mz〉+Mz) e
β(F−H(~m ′s, ~H)) (S.22)

=
∂〈Mz〉

∂Hz

− β

∫

dΩ ′s (〈Mz〉 −Mz)
2 eβ(F−H(~m ′s, ~H)) (S.23)

=
∂〈Mz〉

∂Hz

− β
〈

(〈Mz〉 −Mz)
2〉 . (S.24)
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Eventually,

〈Mz〉
2 − 〈M2

z 〉 =
〈

(〈Mz〉 −Mz)
2〉 = kBT

∂〈Mz〉

∂Hz

= kBT χzz . (S.25)

Note that the higher the temperature, or the magnetic susceptibility, the higher the fluctuations.

Equation (S.25) is typical of a (dissipation-free) application of the fluctuation-dissipation theorem, which
relates the fluctuation of a thermodynamic quantity to the response function of the system (in this case,
the magnetic susceptibility).

Exercise 2. Rigid Pendulums.

g
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We will now consider a lattice of N classical rigid rotors. Each
rotor is independent, is free to point in any spatial direction and
has a moment of inertia I = mR2. Its Hamiltonian is

H =
1

2I

(

p2θ +
p2ϕ

sin2 θ

)

. (4)

First a note: how the Hamiltonian (4) is derived.

Let’s start from the Lagrangian of the rotor in cartesian coordinates

L =
1

2
m|~v|2 , with ~v =

d~r

dt
. (S.26)

In spherical coordinates with |~r| = R, we have

d~r = R (dθ ~eθ + sin θdϕ~eϕ) , (S.27)

and thus

L (θ, ϕ) =
1

2
mR2

(

θ̇2 + sin2 θϕ̇2
)

. (S.28)

The conjugate momenta are then

pθ =
∂L

∂θ̇
= mR2θ̇ ⇒ θ̇ =

pθ
mR2

; (S.29)

pϕ =
∂L

∂ϕ̇
= mR2 sin2 θ ϕ̇ ⇒ ϕ̇ =

pϕ

mR2 sin2 θ
. (S.30)

Then

H = θ̇ pθ + ϕ̇ pϕ − L =
1

2

[

p2θ
mR2

+
p2ϕ

mR2 sin2 θ

]

=
1

2I

[

p2θ +
p2ϕ

sin2 θ

]

. (S.31)

Also, for when we will calculate the partition function later, we need to determine the correct measure to integrate
on the variables θ, ϕ, pθ and pϕ. If you do the calculation explicitely (using in particular Eqs. (S.29) and (S.30)),
one can see that the correct integration measure is simply dθ dϕ dpθ dpϕ.

(a) Calculate the (canonical) partition function of the system of N rotors. Calculate the
internal energy and the heat capacity. Study the regimes T → 0 and T → ∞.

We now immerse theN rotors into a gravitational field with potential V = mg xi,z = −mgR cos θi.

(b) Determine the partition function and compare it with the partition function of Exercise 1.
Calculate the free energy, internal energy and heat capacity of the system. Discuss the
limits T → 0 and T → ∞.

Solution. The solution to this exercise is attached on page 10.
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Exercise 3. Independent Dimers in a Magnetic Field. Quantum vs Ising.

We consider a system of N independent dimers of two spins,
s = 1/2, described by the Hamiltonian

Hquantum
0 = J

∑

i

(

~Si,1 · ~Si,2

)

, (5)

where i is the dimer index and ~Si,1 (resp. ~Si,2) are the spin
operators of the first (resp. second) particle of the dimer. Both particles have spin 1/2. For
simplicity, we use ~ = 1. To this quantum system corresponds a classical Ising dimer, described
by:

HIsing
0 =

1

2
J
∑

i

(

σi,1 · σi,2 −
1

2

)

, (6)

where σi,m = ±1. The spins are aligned along the z axis. We will use eigenstates and eigenen-
ergies to denote also the classical states and energies.

(a) What are the eigenstates and the eigenenergies of a single dimer for the two cases?

(b) For both cases consider the macroscopic system and determine the Helmholtz free energy,
the entropy, the internal energy and the specific heat as a function of temperature and
N . Discuss the limit T → 0 and T → ∞ for both signs of J (antiferromagnetic and
ferromagnetic case).

Note: The following exercises are left for the fun of the interested reader.

(c*) We now apply a magnetic field along z direction leading to an additional term in the
Hamiltonian,

Hquantum
mag = −gµBH

∑

i,m

Sz
i,m (7a)

HIsing
mag = −gµBH

∑

i,m

σi,m
2

. (7b)

How do the eigenenergies change? Sketch the energies with respect to the applied field H,
the partition functions and determine the ground state for both cases. For the antiferro-
magnetic case you should notice a critical field. What differences do you notice between
the classical and quantum system when the the critical field is reached? For the quantum
case discuss in this context the entropy per dimer in the limit T → 0.

(d*) Calculate the magnetization m for the two cases. In which limit are they the same?
Moreover compute the magnetic susceptibility χ for the quantum case and discuss its
dependence on H for different temperatures.

Solution.

(a) For the Quantum case we may write the Hamiltonian in terms of the total dimer spin ~Si = ~Si,1 + ~Si,2 as

Hquantum
0 =

J

2

∑

i

(

~S2
i − ~S2

i,1 − ~S2
i,2

)

=
J

2

∑

i

(

~S2
i −

3

2

)

. (S.32)

Clearly, the eigenstates of a single dimer are the spin singlets and triplets:
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• The singlet Ψs = 1√
2

(

|↑↓〉 − |↓↑〉
)

has total spin 0 and, thus, eigenvalue Es = − 3
4
J .

• The triplet states are Ψt
0 = 1√

2
(| ↑↓〉 + | ↓↑〉), Ψt

1 = | ↑↑〉 and Ψt
−1 = | ↓↓〉. They have total spin 1,

~S2
i = 2 and eigenvalue Et = 1

4
J .

The Ising case has also four states:

• The doublet states Φanti
up = |↑↓〉,Φanti

down = |↓↑〉 have total spin 0 and the eigenvalue Es = − 3
4
J .

• The doublet state Φ1 = |↑↑〉,Φ−1 = |↓↓〉 have total spin magnitude 1 and the eigenvalue Et = 1
4
J .

The two systems have the same eigenvalues but with different degeneracies.

(b) The partition function for the two cases is

Zquantum =
(

3e
− J

4kBT + e
3J

4kBT

)N

(S.33a)

ZIsing =
(

2e
− J

4kBT + 2e
3J

4kBT

)N

, (S.33b)

so we could write them as

Z =
(

ae
− J

4kBT + be
3J

4kBT

)N

, (S.34)

where a = 3, b = 1 for the quantum case and a = b = 2 for the Ising one.

The connection to thermodynamics is made via the Helmholtz free energy:

F (T,N) = −
1

β
lnZ =

JN

4
−

N

β
ln

(

a+ beβJ
)

, (S.35)

where β = 1
kBT

. The entropy is given by

S(T,N) = −
∂F

∂T
= −

∂F

∂β
·
∂β

∂T
= kBβ

2 ∂F

∂β

= kBβ
2

(

N

β2
ln

(

a+ beβJ
)

−
N

β

bJeβJ

a+ beβJ

)

= NkB ln
(

a+ beβJ
)

−NkBβ
bJeβJ

a+ beβJ
. (S.36)

The internal energy is given by

U(T,N) = −
∂

∂β
lnZ = JN

(

1

4
−

beβJ

a+ beβJ

)

, (S.37)

and, finally, the specific heat evaluates to

c(T,N) =
1

N

∂U

∂T
= −

kBβ
2

N

∂U

∂β
= abkBJ

2 β2eβJ

(a+ beβJ)2
. (S.38)

Note here that the specific heat vanishes in the limit of low and high temperatures independent of the sign
of J . For the quantum case the internal energy vanishes for large temperatures (independent of the sign
of J) and reaches N times the ground state energy for T → 0 (for J > 0 singlets are preferred and we
get U → − 3

4
JN , whereas for J < 0 we get the triplets and U → JN 1

4
). On the other hand for the Ising

case U → − 1
4
JN for large temperature independent of the sign of J , while for T → 0 we get the minimum

energy state (U → − 3
4
JN for J > 0 and U → JN 1

4
for J < 0).

(c) The z-component of the magnetic moment vanishes for Ψs and Ψt
0 and therefore their energy does not

change. However, the Ψt
±1 do have a nonvanishing z-component of ±gµB , which leads to a new energy

Et
±1 = 1

4
J ∓ gµBH (Figure 1).

For the classical system the total magnetic moment for Φanti is zero so the corresponding energy is un-
changed when the magnetic field is applied, while for Φ we have the same energy dependence like for the
quantum case. Therefore only the energy for states with parallel spins is split, the other one remaining
degenerate.
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Figure 1: The energy for the four states of the quantum dimer as a function of the magnetic field for J > 0 (the
antiferromagnetic case).

To calculate the entropy per dimer for the quantum case (it is known as the von Neumann entropy2) we
start with the thermal state (in the basis of its eigenstates) and the partition function (per dimer) is:

ρ =
1

Z









eβJ 0 0 0
0 1 0 0

0 0 e−βgµbH 0

0 0 0 eβgµbH









and (S.39)

Zquantum = tr(Zρ) = eβJ + 1 + 2 cosh(βgµBH), (S.40)

where we have introduced an energy offset of J
4
(the triplet and singlet energies become Es

offset = −J,Et
offset =

0). Note that ρ is independent of the offset since we normalize it to tr ρ = 1. The von Neumann entropy
per dimer is given by

s(T,H)

kB
= − tr (ρ log ρ)

= logZ −
β

Z

∂Z

∂β

= log
(

eβJ + 1 + 2 cosh(βgµBH)
)

−
2βgµBH sinh(βgµBH) + βJeβJ

eβJ + 1 + 2 cosh(βgµBH)
. (S.41)

The expression corresponds to the result we got in b) in the limit H → 0.

Let us first consider the case J > 0. Here, the singlet state is preferable at low fields |H| < Hc and we get
s(T ;H) → 0 for T → 0. At |H| = Hc we have a two-fold degneracy in the ground state (s(T ;H) → kB log 2
for T → 0) and with H > Hc the ground state is unique again (s(T ;H) → 0 for T → 0). This is illustrated
in Figure 1 and Figure 2.

If J < 0 the triplet state is energetically favorable. If |H| = 0 then the ground state is three-fold degenerate
(s(T ;H) → kB log 3 for T → 0). Finite fields break this symmetry and we get (s(T ;H) → 0 for T → 0) if
|H| > 0.

For the Ising case the partition function is given by:

ZIsing = e−
βJ
4

(

2eβJ + 2 cosh(βgµBH)
)

. (S.42)

For J > 0 in the limit T → 0 the doublet state is the minimum one as long |H| < Hc and for |H| = Hc it
has three-fold degeneracy while for |H| > Hc a unique state is obtained.

2 This is equivalent to calculating the Helmholz free energy per dimer and taking the derivative with regards
to temperature as is done in (a). To see this, note that

s(T,H) = −
∂F

∂T
= −kBβ

2 ∂

∂β

1

β
logZ = kB logZ − kBβ

∂

∂β
logZ = kB logZ −

kBβ

Z

∂

∂β
tr e−βH

= kB logZ +
kBβ

Z

∂

∂β
tr ρZ = kB logZ −

kBβ

Z

1

β
tr (ρZ log ρZ) = kB logZ − kB tr (ρ [log ρ+ logZ])

= kB logZ − kB tr (ρ log ρ)− kB tr (ρ) logZ = −kB tr (ρ log ρ) ,

where we used that ρZ is of the form ρZ = e−βH (and thus ∂
∂β

(ρZ) = 1
β
ρZ log(ρZ)), and that tr ρ = 1. Don’t

forget also that Z is a scalar, not an operator.
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Figure 2: Entropy per dimer (J > 0) as a function of temperature for zero field (solid line), critical field (dashed
line) and for higher field (dotted line). The inset shows the entropy at low temperature as a function of the field,
peaked around the critical field.

The description for J < 0 is the same as for the quantum system.

(d) For the quantum system using the free energy per dimer,

f(T,H) = −
1

β
logZ = −

1

β
log

(

eβJ + 1 + 2 cosh(βgµBH)
)

(S.43)

we find for the magnetization

mquantum(T,H) = −

(

∂f(T,H)

∂H

)

T

=
2gµB sinh(βgµBH)

eβJ + 1 + 2 cosh(βgµBH)
(S.44)

For the Ising system

mIsing(T,H) =
2gµB sinh(βgµBH)

2eβJ + 2 cosh(βgµBH)
, (S.45)

so for eβJ ∼ 1 it is the same with the one for the quantum case. This correspond to the high temperature
limit β → 0.

The susceptibility for the quantum case is given by:

χ(T,H) =
∂m(T,H)

∂H
= 2βµ2

Bg
2 2 + (1 + eβJ) cosh(βgµBH)

(1 + eβJ + 2 cosh(βgµBH))2
. (S.46)

Let J > 0. If we plot the result for different temperatures (Figure 3), we see that for very small tempera-
tures, the magnetization has a sudden increase at Hc, which follows directly from the fact that at this field
strength, the ground-state of the system becomes magnetized. For higher temperatures, kBT ∼ J , the
system behaves as if it was a simple paramagnet, i.e. we have a linear dependence on the magnetic field.
In this regime, the relevant energy scale is given by the temperature and thus the system is not ordered
anymore but fluctuations dominate.
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Figure 3: Magnetization as a function of applied field for small temperature (solid line), intermediate temperature
(dashed line) and T ∼ J . The inset shows the susceptibility for the corresponding temperatures. For T → 0, the
susceptibility diverges at H = Hc.
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Statistical Physics.

Solutions Sheet 3.

HS 2013
Prof. Manfred Sigrist

Exercise 1. Quantum rotor in a magnetic field

Consider a lattice of N quantum rotors. Each rotor is independent and has a momentum of
inertia I = mR2. It is described by the following Hamiltonian:

H =
L
2

2mR2
=

L
2

2I
. (1)

(a) Calculate the (canonical) partition function of the system of N rotors. Determine the
entropy, the internal energy, the projection of the angular moment along the z direction
and the heat capacity. Compute them numerically and study the high and low temperature
limits. It is useful to define θrot by kBθrot = 1/I.

Hint. If f (n)(∞) → 0, ∀n ∈ N then the Euler–Maclaurin formula could be simplified to:

∞
∑

l=0

f(l) =

∫

∞

0

dlf(l) +
1

2
f(0)−

∞
∑

k=2

(−1)kbk
(k)!

fk−1(0) +R∞ (2)

where R∞ is a small correction and bk are the Bernoulli numbers b2 = 1/6, b3 = 0, b4 = −1/30, · · · .

http: // people. csail. mit. edu/ kuat/ courses/ euler-maclaurin. pdf

Solution. Is it useful to work in the eigenbasis |l,m〉 defined by L
2|l,m〉 = l(l + 1)|l,m〉, Lz|l,m〉 = m|l,m〉

where l = 0 · · ·∞ and m = −l · · · l. The partition function is Z = ZN
1 where

Z1 =

∞
∑

l=0

l
∑

m=−l

e−βl(l+1)/(2I) =

∞
∑

l=0

(2l + 1)e−βl(l+1)/(2I) =

∞
∑

l=0

(2l + 1)e−l(l+1)θrot/(2T ) (S.1)

The high (low) temperature limits correspond to θrot
T

→ 0 ( θrot
T

→ ∞). For low temperature limit we keep only
first two terms in the sum. For the high temperature limit we use Euler-Maclaurin formula up to k = 4 and
collect the dominant terms.

∫ ∞

0

dl(2l + 1)e−l(l+1)θrot/(2T ) = − 2T

θrot

∫ ∞

0

dl
d

dl
e−l(l+1)θrot/(2T ) =

2T

θrot
(S.2)

In the two limits the results become:

Z1 =







2T
θrot

+ 1
3
+ θrot

30T
if θrot

T
→ 0

1 + 3e−θrot/T if θrot
T

→ ∞
. (S.3)

The internal energy is:

U = −∂ lnZ

∂β
= kBT

2 ∂ lnZ

∂T
=











NkB
(

2T2

θrot
− θrot

30

)(

2T
θrot

+ 1
3
+ θrot

30T

)−1

if θrot
T

→ 0

3NkBθrote
−θrot/T

(

1 + 3e−θrot/T
)−1

if θrot
T

→ ∞
(S.4)

≈











NkB
(

T − θrot
6

− θ2rot
180T

)

if θrot
T

→ 0

3NkBθrote
−θrot/T if θrot

T
→ ∞

. (S.5)

The entropy is:

S − S0 = −∂F

∂T
=

∂kBT lnZ

∂T
= NkB

(

lnZ1 + T
∂ lnZ1

∂T

)

= NkB lnZ1 +
U

T
(S.6)

1
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≈











NkB
(

ln
(

2T
θrot

+ 1
3
+ θrot

30T

)

+ 1− θrot
6T

− θ2rot
180T2

)

if θrot
T

→ 0

NkB
(

ln
(

1 + 3e−θrot/T
)

+ 3 θrot
T

e−θrot/T
)

if θrot
T

→ ∞
. (S.7)

It is clear that S(T = 0) = 0.

By symmetry, the projection of the angular momentum is 0 .

The specific heat is:

CV =
∂U

∂T
≈











NkB
(

1 + 1
180

(

θrot
T

)2
)

if θrot
T

→ 0

3NkB
(

θrot
T

)2
e−θrot/T if θrot

T
→ ∞

. (S.8)

Figure 1: The two analytic approximations and the fully numerical solution for the specific heat as a function of
temperature (θrot = 1).

Now add a magnetic field that couples to the angular momentum as:

H ′ = −γB · L . (3)

(b) What is the effect of the magnetic field? Determine the entropy, the internal energy, the
projection of the angular moment along the z direction and the heat capacity. Compute
them numerically and study the high and low temperature limits. It is useful to define
θmag by kBθmag = γBz.

Solution.

H ′ = −γB · L = −γBzLz . (S.9)

The magnetic field splits the 2l + 1 symmetry of H.

Z1 =

∞
∑

l=0

l
∑

m=−l

e−β{l(l+1)/(2I)−γBzm} =

∞
∑

l=0

{

e−βl(l+1)/(2I)
l
∑

m=−l

eβγBzm

}

=

∞
∑

l=0

sinh(βγBz(2l + 1)/2)

sinh(βγBz/2)
e−βl(l+1)/(2I)

(S.10)
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where we used for the sum over m the result from the Lecture Notes 2.4.2 .

Z1 =
1

sinh
(

θmag

2T

)

∞
∑

l=0

sinh

(

(2l + 1)
θmag

2T

)

e−l(l+1)θrot/(2T ) (S.11)

Using limx→0 sinhx ≈ x and limx→∞ sinhx ≈ ex

2
and assuming θrot > θmag we have:

Z1 =







2T
θrot

+ 1
3
− θrot

30T
if 1

T
→ 0

1 + eθmag/T e−θrot/T if 1
T

→ ∞
=







2T
θrot

+ 1
3
− θrot

30T
if 1

T
→ 0

1 + e−θeff/T if 1
T

→ ∞
, (S.12)

where θeff = θrot − θmag. In this approximation, for high temperature we recover the result from (a). In low
temperature limit the effect of the magnetic field enters explicitly, θrot being replaced by θeff and the prefactor 3
is replaced by 1.

The internal energy is:

U ≈











NkB
(

T − θrot
6

− θ2rot
180T

)

if 1
T

→ 0

NkBθeffe
−θeff/T if 1

T
→ ∞

. (S.13)

The entropy is:

S − S0 ≈











NkB
(

ln
(

2T
θrot

+ 1
3
+ θrot

30T

)

+ 1− θrot
6T

− θ2rot
180T2

)

if 1
T

→ 0

NkB
(

ln
(

1 + e−θeff/T
)

+ θeff
T

e−θeff/T
)

if 1
T

→ ∞
. (S.14)

The projection of the angular momentum is simply:

〈Lz〉 = − ∂F

∂(γBz)
=

N

β

∂ lnZ1

∂(γBz)
≈







0 if 1
T

→ 0

Ne−θeff/T if 1
T

→ ∞
. (S.15)

The specific heat is:

CV ≈











NkB
(

1 + 1
180

(

θrot
T

)2
)

if 1
T

→ 0

NkB
(

θeff
T

)2

e−θeff/T if 1
T

→ ∞
. (S.16)
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Figure 2: The two analytic approximations and the fully numerical solution for the specific heat as a function of
temperature for different values of θmag = 0.1, 0.3 and 0.5 (θrot = 1).

Exercise 2. Ideal fermionic quantum gas in a harmonic trap

In this exercise we study the fermionic spinless ideal gas confined in a three-dimensional harmonic
potential and compare it with classical case (for the results of the classical case see Exercise Sheet
1). The energy states of the gas are given by

Ea = ~ω(ax + ay + az) (4)

where we neglect the zero point energy E0 = 3 ~ω/2. The occupation number of the oscillator
modes of the state Ea is given by na where a = (ax, ay, az) with ai ∈ {0, 1, 2, ...} .

(a) Consider the high-temperature, low-density limit (z ≪ 1). Derive the grand canonical

4



partition function Zf of this system and compute the grand potential Ωf . Show that

Ωf ∝ f4(z) , (5)

where the function fs(z) is defined as

fs(z) = −

∞
∑

l=1

(−1)l
zl

ls
. (6)

Solution. We begin with the general definition of the grand canonical partition function within the
occupation number formalism (section 2.5 of the lecture notes) and find

Zf =
∏

a

∑

na

(

ze−βEa

)na

=
∏

a

(1 + ze−βEa) . (S.17)

In order to compute the grand potential Ω = −1/β lnZ, we use the series expansion

ln(1 + x) = −
∞
∑

ℓ=1

(−x)ℓ

ℓ
for − 1 < x ≤ 1 . (S.18)

This expansion is applicable for the logarithm of the partition function in (S.17) if ze−βEa ≤ 1 (it is always
positive). This certainly holds in the high-temperature limit z ≪ 1 .

Let us first consider the fermionic grand potential Ωf ,

lnZf =
∑

a

ln(1 + ze−βEa) = −
∑

a

∞
∑

ℓ=1

(−1)ℓ
zℓ

ℓ
e−ℓβEa = −

∞
∑

ℓ=1

(−1)ℓ
zℓ

ℓ

(

∞
∑

a=0

e−ℓβ~ωa

)3

= −
∞
∑

ℓ=1

(−1)ℓ
zℓ

ℓ

(

1

1− e−ℓβ~ω

)3

= −







−
∑∞

ℓ=1(−1)ℓ zℓ

ℓ
1

(ℓβ~ω)3
if β → 0

−
∑∞

ℓ=1(−1)ℓ zℓ

ℓ
if β → ∞

=







1
(β~ω)3

f4(z) if β → 0

f1(z) if β → ∞
. (S.19)

We obtained both the high and the low temperature limits. Otherwise, in the high temperature limit, we
can approximate the sum over the oscillator modes by an integration with constant and normalized density
of states,

∑∞
ak=0 →

∫∞

0
dak, for k = x, y, z.

lnZf ≈ −
∫ ∞

0

dax

∫ ∞

0

day

∫ ∞

0

daz

∞
∑

ℓ=1

(−1)ℓ
zℓ

ℓ
e−ℓβ~ω(ax+ay+az)

=
−1

(β~ω)3

∞
∑

ℓ=1

[

(−1)ℓ
zℓ

ℓ4

]

=
1

(β~ω)3
f4(z). (S.20)

The fermionic grand potential is

Ωf = − 1

β

1

(β~ω)3
f4(z). (S.21)

(b) Derive the internal energy U and the average particle number 〈N〉. In order to get U in
terms of N (instead of dealing with the chemical potential), introduce the parameter

ρ ≡

(

~ωN1/3

kBT

)3

, (7)

and relate it to z using the high-temperature, low-density expansion of 〈N〉. Interpret the
condition ρ ≪ 1.

Then, expand U up to second order in ρ, relating it to N .
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Solution. First, we compute the internal energy of the system,

Uf =
∂(β Ωf )

∂β

∣

∣

∣

∣

z

, (S.22)

where the derivative has to be taken at constant fugacity z = eβµ. Starting from (S.21) we find

Uf =
3

β

1

(β~ω)3
f4(z), (S.23)

which shows that the internal energy is proportional to the grand potential, Uf = −3Ωf .

The average particle number can be computed in a similar way,

〈Nf 〉 = z
∂

∂z
lnZf . (S.24)

We have

〈Nf 〉 = z
∂

∂z

1

(β~ω)3
f4(z) =

1

(β~ω)3
f3(z), (S.25)

where we used

z
∂

∂z
f4(z) = f3(z). (S.26)

In order to relate the internal energy to the particle number, we start with the high-temperature expansion
of the particle number equation,

〈Nf 〉 =
1

(β~ω)3
f3(z) ≈

1

(β~ω)3

(

z − z2

8

)

. (S.27)

The parameter ρ is given by (we are dropping the indices for readability)

ρ ≡
(

~ωN1/3

kBT

)3

. (S.28)

The condition z ≪ 1 also implies ρ ≪ 1. Expanding in ρ allows us to deal with the particle number instead
of the chemical potential. Solving ρ = z − z2/8, we obtain z = 4 ± 2

√
4− 2ρ . Choosing the relevant

solution and expanding
√

(1 + x) ≈ 1 + x
2
− x2

8
we find

z = ρ+
ρ2

8
. (S.29)

To interpret the condition ρ ≪ 1 we first note that for a system, in which every state up to a given maximal
energy ǫmax = ~ωamax is singly occupied, the number of occupied states is proportional with a3

max. The
characteristic energy scale of such a system is thus given by ~ωN1/3 (for fermions ∼ εF ). Therefore, this
condition requires that the characteristic energy scale of such a singly occupied system is much smaller
than the thermal energy kBT (high-temperature limit). This means that we consider temperatures at which
the average occupation of the states is much smaller than one (low-density limit).

We write the internal energy up to second order in ρ as

U =
3

β

1

(β~ω)3
f4(z) =

3

β

1

(β~ω)3

(

z − z2

16

)

=
3

β

1

(β~ω)3

(

ρ+
ρ2

16

)

=
3

β

(

N +N2(β~ω)3
1

16

)

= 3NkBT

(

1 +N

(

~ω

kBT

)3
1

16

)

, (S.30)

where we recover the equipartition law in leading order and the positive first order quantum corrections
∝ N(~ω/kBT )

3 ≪ 1 distinguishing the fermions from the ideal classical gas.

(c) Compute the specific heat C. Which quantity has to be fixed in order to do this?
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Solution. Since our system does not really have a volume as thermodynamic variable we have to compute
the specific heat CN by fixing the number of particles. Hence, as a starting point we use the expression
(S.30) for the inner energy, where we can keep N fixed:

CN =

(

∂U

∂T

)

N

= 3NkB

(

1− 1

8
N

(

~ω

kBT

)3
)

. (S.31)

(d) Compute the isothermal compressibility κT .

Solution. Be definition

κT =
v

N

(

∂N

∂µ

)

T

, (S.32)

where v = V
N
. Therefore we have for our system

κT =
v

〈N〉

(

∂z

∂µ

∂N

∂z

)

T

=
v

N
βz

1

(β~ω)3
∂f3(z)

∂z
= vβ

f2(z)

f3(z)
≈ N

V kBT

(

1− 1

8
N

(

~ω

kBT

)3
)

. (S.33)

(e) Interpret your results for U , C, and κT by comparing them with the corresponding results
for the classical Boltzmann gas. How do the quantum corrections influence the fermionic
system?

Solution. In summary we have found up to first order in ρ:

U = 3NkBT

(

1 +N

(

~ω

kBT

)3
1

16

)

, (S.34)

CN = 3NkB

(

1− 1

8
N

(

~ω

kBT

)3
)

, (S.35)

κT =
N

V kBT

(

1− 1

8
N

(

~ω

kBT

)3
)

, (S.36)

These results as a function of temperature are plotted in Fig. 3; each for the classical and the fermionic
case. Note that our expansions up to first order in ρ are only valid for ρ ≪ 1. We can still plot these
expansions for larger values of ρ (that is, lower temperatures) to observe the trends, keeping in mind that
these results are not exactly valid.

We see that

• In zeroth order in ρ the results for the classical (Boltzmann) gas in a harmonic trap are recovered.

• Due to quantum corrections, the internal energy U for fermions is higher than the ideal classical gas.

This can be understood by taking quantum statistics into account. Fermions are not allowed to oc-
cupy the same state (Pauli). Lowering the temperature, the system tends to occupy low energy states
with growing probability. While the classical system is not influenced at all by double occupancy, in
the fermionic system the double occupancy is forbidden and occupation of low-energy states is thus
reduced, increasing the inner energy Uf compared to the classical gas.
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Figure 3: Thermodynamics of fermionic gase compared to the classical gas. Note that these quantities are
computed within the high-temperature, low-density approximation and are therefore not exact results. Still, they
can be used to observe trends. The dashed (blue) line is for the fermions and the continuous (black) line for the
classical gas. We set N(~ω)3 = 100.
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Statistical Physics.

Solutions Sheet 4.

HS 2013
Prof. Manfred Sigrist

Exercise 1. Ideal phonons in a harmonic trap.

In this exercise we consider an ideal gas of phonons as an example of bosonic particles confined
in a three-dimensional harmonic potential. Observe the differences to the cases of classical and
fermionic particles in the same harmonic potential, which we discussed in Sheet 1, Exercise 3,
and for Sheet 3, Exercise 2, respectively.

The energy states of the phonons are given by

Ea = ~ω(3/2 + ax + ay + az) , (1)

including the zero point energy of E0 = 3 ~ω/2. The occupation number of the oscillator modes
of the state Ea is given by a = (ax, ay, az) with ai ∈ {0, 1, 2, ...}.

(a) Consider the high-temperature, low-density limit (z ≪ 1). Derive the grand canonical
partition function for the phonons, Zb, and compute the grand potential Ωb. Take into
account also the zero-point energy of the harmonic oscillators. Show that

Ωb ∝ g4

(

ze−βE0

)

, (2)

where the function gs(z) is defined as

gs(z) =
∞
∑

l=1

zl

ls
. (3)

(b) Derive the internal energy U and the average particle number 〈N〉. Follow the same
approach as in Sheet 3, Exercise 2 in order to obtain U in terms of N .

(c) Compute the specific heat CN for constant particle number.

Compute the thermal expansion coefficient α. Use the average square displacement of
the harmonic oscillator r2eff = x20 〈ax + ay + az〉 in order to define an effective volume
Veff = 4π/3 r3eff . Give an interpretation of Veff.

(d) Plot your results for U , C, and α for the classical, the fermionic, and the bosonic case and
note the differences.

(e) Find the critical temperature Tc at which Bose-Einstein condensation occurs. How can
this be reconciled with the high-temperature, low-density limit?

Hint. The chemical potential can not be larger than the lowest energy level of the particles.

Solution.

(a) We begin with the general definition of the grand canonical partition function within the occupation number
formalism (section 2.5 of the lecture notes) and find

Zb =
∏

a

∞
∑

na=0

(

ze−βEa

)na

=
∏

a

(1− ze−βEa)−1 (S.1)
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In order to compute the grand potential Ω = −1/β logZ, we use the series expansion

log(1 + x) = −
∞
∑

ℓ=1

(−x)ℓ

ℓ
for − 1 < x ≤ 1 . (S.2)

This expansion is applicable for the logarithm of the partition function in (S.1) as 0 < ze−βEa ≤ 1 (as
µ ≤ Emin).

With this replacement we can exactly calculate log(Zb) in the high-temperature limit (β → 0):

logZb = −
∑

a

log(1− ze−βEa) =
∑

a

∞
∑

ℓ=1

zℓ

ℓ
e−ℓβEa =

∞
∑

ℓ=1

zℓ

ℓ

(

∞
∑

a=0

e−ℓβ~ω/2 e−ℓβ~ωa

)3

=

∞
∑

ℓ=1

zℓ

ℓ

(

e−ℓβ~ω/2

1− e−ℓβ~ω

)3
β→0≈

∞
∑

ℓ=1

(

ze−βE0
)ℓ

ℓ

1

(ℓβ~ω)3
=

1

(β~ω)3
g4
(

ze−βE0

)

(S.3)

The grand potential is then given by

Ωb = − 1

β

1

(β~ω)3
g4
(

ze−βE0

)

. (S.4)

(b) First, we compute the internal energy of the system,

Ub =
∂(β Ωb)

∂β

∣

∣

∣

∣

z

, (S.5)

where the derivative has to be taken at constant fugacity z = eβµ. Starting from (S.4) we find

Ub =
3

β

1

(β~ω)3
g4
(

ze−βE0

)

+
E0

(β~ω)3
g3
(

ze−βE0

)

, (S.6)

which shows that the internal energy is proportional to the grand potential plus a term representing the
zero-point energy of the harmonic oscillators.

The average particle number can be computed in a similar way,

〈Nb〉 = z
∂

∂z
logZb . (S.7)

We have

〈Nb〉 = z
∂

∂z

1

(β~ω)3
g4
(

ze−βE0

)

=
1

(β~ω)3
g3
(

ze−βE0

)

, (S.8)

where we used

z
∂

∂z
g4(z) = g3(z). (S.9)

We immediately see, that the second term in equation (S.6) is just given by 〈Nb〉E0.

In order to simplify the following calculation, we define a renormalized fugacity

z̃ = ze−βE0 (S.10)

Now we want to relate the internal energy to the particle number and start with the high-temperature
expansion of the particle number equation,

〈Nb〉 =
1

(β~ω)3
g3(z̃) ≈

1

(β~ω)3

(

z̃ +
z̃2

8

)

. (S.11)

The parameter ρ is given by

ρ ≡
(

~ωN1/3

kBT

)3

. (S.12)

The condition z ≪ 1 also implies ρ ≪ 1. Expanding in ρ allows us to deal with the particle number instead
of the chemical potential. Inverting the series ρ = z + z2/8, we find

z̃ = ρ− ρ2

8
. (S.13)
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To interpret the condition ρ ≪ 1 we first note that for a system, in which every state up to a given
maximal energy ǫmax = ~ωamax is singly occupied, the number of occupied states corresponds to a3

max/6.
The characteristic energy scale of such a system is thus given by ~ωN1/3. Therefore, this condition requires
that the characteristic energy scale of such a singly occupied system is much smaller than the thermal energy
kBT (high-temperature limit). This means that we consider temperatures at which the average occupation
of the states is much smaller than one (low-density limit).

We write the internal energy up to second order in ρ as

U −NE0 =
3

β

1

(β~ω)3
g4(z̃) =

3

β

1

(β~ω)3

(

z̃ +
z̃2

16

)

=
3

β

1

(β~ω)3

(

ρ− ρ2

16

)

=
3

β

(

N −N2(β~ω)3
1

16

)

= 3NkBT

(

1−N

(

~ω

kBT

)3
1

16

)

, (S.14)

where we recover the equipartition law in leading order and the (negative) first order quantum corrections
∝ N(~ω/kBT )

3 ≪ 1 distinguishing the bosons from the ideal classical gas.

(c) Since our system does not really have a volume as thermodynamic variable we have to compute the specific
heat CN by fixing the number of particles. Hence, as a starting point we use the expression (S.14) for the
internal energy, where we can keep N fixed:

CN =

(

∂U

∂T

)

N

= 3NkB

(

1 +
1

8
N

(

~ω

kBT

)3
)

. (S.15)

Finally, we compute the thermal expansion coefficient α = V −1 (∂V/∂T ) at fixed N . For this we have to
define an effective volume of the system by introducing an effective radius r2eff ≡ 〈r2〉 . From basic quantum
mechanics we know that r2eff = x2

0〈ax + ay + az〉, where x0 represents the characteristic length scale which
we fix to unity. Hence, we can relate r2eff to the internal energy of the system via

~ω r2effN = U . (S.16)

Therefore, we find

Veff ≡ 4π

3
r3eff =

4π

3

(

U

~ωN

)3/2

. (S.17)

For the thermal expansion coefficient we obtain

α = U−3/2

(

∂U3/2

∂T

)

N

=
3

2
U−1CN

=
3

2
U−1 3kBN

(

1 +
1

8
N

(

~ω

kBT

)3
)

=
3

2

1

T

1 + ρ
8

1− ρ
16

=
3

2

1

T

(

1 +
3

16
ρ

)

, (S.18)

which agrees (in leading order) with the result for a classical gas in the harmonic trap (α = 3/(2T )).

(d) In summary, in Sheet 3, Exercise 2 and in this exercise we have found up to first order in ρ:

U = 3NkBT

(

1±N

(

~ω

kBT

)3
1

16

)

, (S.19)

CN = 3NkB

(

1∓ 1

8
N

(

~ω

kBT

)3
)

, (S.20)

α =
3

2

1

T

(

1∓ 3

16
N

(

~ω

kBT

)3
)

, (S.21)

where the upper and lower sign corresponds to fermions and bosons, respectively. For the classical case,
the corrections to 1 vanish for all three formulas.

These results as a function of temperature are plotted in Fig. 1; each for the classical, the fermionic, and
the bosonic case. Note that our expansions up to first order in ρ are only valid for ρ ≪ 1. We can still
plot these expansions for larger values of ρ (that is, lower temperatures) to observe the trends, keeping in
mind that these results are not exactly valid.

We see that
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Figure 1: Thermodynamics of fermionic and bosonic gases compared to the classical gas. Note that these quantities
are computed within the high-temperature, low-density approximation and are therefore not exact results. Still,
they can be used to observe trends. The dashed (blue) line is for the fermions, the dotted (red) line for the bosons,
and the continuous (black) line for the classical gas. We set N~ω = 100.

• In zeroth order in ρ the results for the classical (Boltzmann) gas in a harmonic trap are recovered.

• Due to quantum corrections the internal energy U for fermions (bosons) is higher (lower) than the
ideal classical gas.

This can be understood by taking quantum statistics into account. Fermions are not allowed to
occupy the same state (Pauli) while bosons tend to gather in the same quantum state. Lowering
the temperature, the system tends to occupy low energy states with growing probability. While the
classical system is not influenced at all by double occupancy, in the fermionic system the double
occupancy is forbidden and occupation of low-energy states is thus reduced, increasing the internal
energy Ub compared to the classical gas. In the bosonic case, the opposite happens: the probability
of occupying low energy states is enhanced, reducing the internal energy Ub.

• The thermal expansion coefficient is lowered (enhanced) for fermions (bosons) compared to classical
gas. This feature represents the fact that with decreasing temperature the bosons tend to occupy
more low energy states than the fermions, thus reducing the effective volume Veff more strongly with
temperature which enhances the thermal expansion coefficient.

(e) We now analyse the number equation (S.8) for the bosonic system in detail. If we decrease the temperature,
in order to keep the particle number constant, the function g3(z) has to increase. For a bosonic system, the
chemical potential must always be smaller than the state with lowest energy. In this case, this corresponds
to

z ≤ e3β~ω/2 . (S.22)

The maximum of the monotonically increasing function g3(z̃) (see Fig. 2) is taken when z = e3β~ω/2.

Hence, the number equation cannot hold for arbitrary small temperature. There exists a critical tempera-
ture Tc at which the chemical potential is equal to the ground-state energy, µ = E0, and thus ze−βE0 = 1.
This temperature can easily be computed as

Tc =
~ωN1/3

kB
(g3(1))

−1/3 . (S.23)

4



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

z
g 3
Hz
L

Figure 2: Plot of the function g3(z) for values of z between 0 and 1.

The physical interpretation of this critical point is simple: For the derivation of the number equation,
the zero energy state has been neglected. For temperatures above Tc this is a negligible error, but for
temperatures below Tc it becomes energetically favorable to occupy this single state with a macroscopically
large particle number. Hence, the approximation to neglect the occupation of the zero energy state becomes
bad for temperatures below Tc. Macroscopically large occupation of a single quantum state, or equivalently
a density matrix where a single eigenvalue is by far the dominant one, is a definition of a condensate. Hence,
Tc represents the critical temperature for the bosonic gas to form a Bose-Einstein condensate.

With equation (S.23) we show that our high temperature approximation holds even until Tc if the number
of particles N is large: when we compress enough particles, they will condense at a high temperature and
we can use the instability of this approximation to find our Tc. Of course, at Tc itself the approximation
breaks down.

Exercise 2. Behavior of excitations in a semiconductor.

In this exercise we analyze the properties and behavior of electron-excitations of a semiconductor
at finite temperature. In solid state theory, electronic states |k, α〉 are usually labeled by a
pseudomomentum k = (kx, ky, kz) and a band-index α ∈ {1, 2, . . . }. For a crystal with lattice
constant a, the pseudomomentum takes values in the so-called Brillouin zone {−π/a, π/a}3.
Assuming a cubic crystal with side-length L there exist (L/a)3 equally distributed k-vectors in
this Brillouin zone. Each of the states is doubly degenerate due to the spin, such that there are
in total 2(L/a)3 states for each band.

k

E

conduction band

valence band

µ Eg

In order to simplify the treatment, we only
take into account two bands whose energies
are approximated as parabolic,

ǫv(k) = −
~
2
k
2

2mv

ǫc(k) = Eg +
~
2
k
2

2mc

, (4)

as shown in the figure. Here the indices v and
c stand for valence and conduction band, re-
spectively. The parameters mv and mc which
define the curvature of the two bands are
called effective masses and can in general be
different from one another and from the elec-
tron mass. The bandgap, Eg, is the energy
difference between the bottom of the conduc-
tion band and the top of the valence band.
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Assume for this exercise that the bandgap is much larger than the thermal energy and the
chemical potential lies within the gap, βEg ≫ βµ ≫ 1.

(a) Assume at first that the particle number is not fixed and calculate the grand potential Ω
of this system.

Hint. For large L, a sum over k can be approximated by an integral:

∑

k

≈

∫ π/a

−π/a

d3k
L3

8π3
(5)

(b) In a realistic system, the particle number is fixed, as every atom in the solid contributes
a specific number of electrons. We assume here a particle number, such that the lower
band is completely filled at zero temperature, i. e. N = 2(L/a)3. Calculate the chemical
potential µ(T ) at finite temperature.

(c) Starting from your result for Ω, calculate the internal energy U(T,N)− U(T = 0, N) (for
N = 2(L/a)3), using a Legendre transform.

Hint. The final result is given by

U(T,N)− U(T = 0, N) = N

(

kBT

2π~3

)3/2

e−βEg/2 (mvmc)
3/4

(3kBT + Eg) . (6)

(d) A picture that is frequently used in solid state theory is that of electrons and holes: When
an electron is excited to the conduction band, it leaves an empty state in the valence
band. This empty state now behaves like a particle itself and is called a hole. Therefore
an excitation can be regarded as a creation of two particles, similar to the creation of
particle-antiparticle pairs in particle physics.

Use this scheme to interpret the calculated internal energy in terms of the equipartition
law for an ideal gas. How many electrons are in the conduction band?

Solution.

(a) In the grandcanonical ensemble, each of the states can be either occupied or empty, such that we can write
the partition function in the occupation number formalism:

Z(β, z) =
[

∏

k

∏

α=v,c

1
∑

nk,α=0

(

ze−βǫα(k)
)nk,α

]2

=
∏

k

[(

1 + zeβ~
2k2/2mv

)(

1 + ze−β(Eg+~
2k2/2mc)

)]2
(S.24)

Here the exponent 2 is present due to the spin degeneracy. The grand potential is now given by

Ω(β, z) = −1/β log(Z(β, z)) = 2
∑

k

[

log
(

1 + zeβ~
2k2/2mv

)

+ log
(

1 + ze−β(Eg+~
2k2/2mc)

)]

. (S.25)

Due to the assumption βEg ≫ βµ ≫ 1 we know that

zeβ~
2k2/2mv ≫ 1 and ze−β(Eg+~

2k2/2mc) ≪ 1 (S.26)

for all k, leading to the approximations

log
(

1 + zeβ~
2k2/2mv

)

≈ β

(

µ+
~
2k2

2mv

)

+ z−1e−β~2k2/2mv

log
(

1 + ze−β(Eg+~
2k2/2mc)

)

≈ ze−β(Eg+~
2k2/2mc) .

(S.27)
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At this point we can replace the sum over k in (S.25) by an integral over k. This leads to

Ω = − 1

β

∫ π/a

−π/a

d3k
L3

4π3

[

βµ+
β~2k2

2mv
+ z−1e−β~2k2/2mv + ze−β(Eg+~

2k2/2mc)

]

≈ −2µ(L/a)3 − (L/a)3~2π2

mv
− (L/a)3(kBT )

5/2

√
2π3/2~3

(

m3/2
v e−βµ +m3/2

c eβ(µ−Eg)
)

,

(S.28)

where we have replaced the integration interval [−π/a, π/a]3 by R
3 for the Gaussian integrals (last two

terms in the integral).

(b) In the grandcanonical ensemble the average particle number is given by

〈N〉 = −∂Ω

∂µ
. (S.29)

Here we assumed that 〈N〉 = 2(L/a)3. This leads to the equation

2(L/a)3 = 2(L/a)3 +
(L/a)3(kBT )

5/2

√
2π3/2~3

[

−βm3/2
v e−βµ + βm3/2

c eβ(µ−Eg)
]

. (S.30)

This is equivalent to
(

mv

mc

)3/2

= eβ(2µ−Eg) , (S.31)

leading to the result

µ =
Eg

2
+

3

4
kBT log

(

mv

mc

)

. (S.32)

(c) The internal energy is given by
U = Ω+ TS + µN . (S.33)

We already calculated µ as a function of T and N . The entropy is given by the partial derivative

S = −∂Ω

∂T
=

(L/a)3(kBT )
5/2

√
2π3/2~3

[

5

2T

(

m3/2
v e−βµ +m3/2

c eβ(µ−Eg)
)

− 1

kBT 2

(

−µm3/2
v e−βµ + (µ− Eg)m

3/2
c eβ(µ−Eg)

)

]

(S.34)
where we used ∂

∂T
= − 1

kBT2
∂
∂β

. Using equation (S.32), we find
(

m3/2
v e−βµ +m3/2

c eβ(µ−Eg)
)

= 2 e−βEg/2 (mvmc)
3/4 (S.35a)

(

−µm3/2
v e−βµ + (µ− Eg)m

3/2
c eβ(µ−Eg)

)

= Ege
−βEg/2 (mvmc)

3/4 , (S.35b)

and with N = 2(L/a)3

(L/a)3(kBT )
5/2

√
2π3/2~3

= N

(

kBT

2π~3

)3/2

kBT . (S.35c)

Inserting equations (S.35) and (S.34) into equation (S.33), we now obtain the result

U(T,N)− U(T = 0, N) = N

(

kBT

2π~3

)3/2

e−βEg/2 (mvmc)
3/4 (3kBT + Eg) . (S.36)

The zero-temperature energy

U(T = 0, N) = −N~
2π2

2mv
(S.37)

that we subtracted is just the energy of the completely filled valence band.

(d) We call Nc the number of electrons in the conduction band. In the particle-hole picture this is also equal
to the number of holes in the valence band. Assuming now the behavior of ideal gas particles for both
electrons and holes, the internal energy of electrons and holes is given by

Ue =
3

2
NckBT +NcEg Uh =

3

2
NckBT , (S.38)

where Eg describes the energy offset of the conduction band. The total internal energy is then

U = Nc(3kBT + Eg) . (S.39)

By comparing this with equation (S.36) we find the number of electrons in the conduction band

Nc = N

(

kBT

2π~3

)3/2

e−βEg/2 (mvmc)
3/4 , (S.40)

which is exponentially suppressed by the size of the bandgap.
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Statistical Physics.

Solutions Sheet 5.

HS 2013
Prof. Manfred Sigrist

Exercise 1. Canonical quantization of phonons

We consider a chain of N atoms of mass m and coordinates xn, with n = 1, . . . , N . The
atoms interact through a potential V (xn) = V (x1, . . . , xN ) that can be written in the harmonic

approximation as

V (u1, . . . , uN ) =
λ

2

N
∑

n=1

(un+1 − un)
2 +

1

2
mΩ2

N
∑

n=1

(un)
2, (1)

where un = xn − x̄n, |un| ≪ x̄n measures the (small) deviation from the equilibrium position of
each atom x̄n = na, a being the lattice constant. In (1) λ is the elastic constant of the chain and
the Ω term constrains each atom at its equilibrium position. The kinetic energy of the atoms is
readily written as:

T (u̇1, . . . , u̇N ) =
1

2
m

N
∑

n=1

(u̇n)
2. (2)

a) After writing down the classical Lagrangian of the system and the corresponding equations
of motion (Euler-Lagrange equations), solve for the normal modes by imposing periodic
boundary conditions (PBC, un = un+N ). What are the symmetries of the system for
Ω = 0? Comment on the resulting spectrum in the two cases Ω 6= 0 and Ω = 0. In the
latter case, how does the spectrum look like in the long-wavelength regime?

Hint. Solve the E-L equations with an exponential ansatz un ∝ ei(kna−ωt) and impose PBC to

obtain the normal modes ωl = ω(kl). The general solution will look like:

un(t) =

N
∑

l=1

[Ale
i(klna−ωlt) + c.c.], (3)

where the Al are fixed by the initial conditions. The long-wavelength regime is characterized by

kl ≪ 1/a.

Solution. The classical Lagrangian is readily written as:

L(u1, . . . , uN , u̇1, . . . , u̇N ) ≡ L(un, u̇n) = T − V =
1

2

N
∑

n=1

[

mu̇n
2 − λ(un+1 − un)

2 −mΩ2u2
n

]

. (S.1)

Periodic boundary conditions endow the Lagrangian (S.1) with the ring simmetry, i.e., L(un, u̇n) =
L(un+m, u̇n+m) ∀m ∈ Z and with translation invariance symmetry (only if Ω = 0), i.e., L(un, u̇n) =
L(un + ax, u̇n) ∀x ∈ R. The associated Euler-Lagrange equations of motion are:

d

dt

∂L
∂u̇n

=
∂L
∂un

n = 1, . . . , N

→ mün = λ(un+1 + un−1 − 2un)−mΩ2un.

(S.2)

The L.H.S. of the equation above is straightly derived from the Lagrangian. The R.H.S. requires a bit
more calculation: for example, when n = 1

∂L
∂u1

=
1

2
∂u1

[

−λ(uN+1 − uN )2 − λ(u2 − u1)
2 −mΩ2u2

1

]

=

= −1

2
∂u1

[

λ(u1 − uN )2 + λ(u2 − u1)
2 +mΩ2u2

1

]

=

= −
[

λ(u1 − uN )− λ(u2 − u1) +mΩ2u1

]

= −
[

λ(2u1 − u0 − u2) +mΩ2u1

]

,

(S.3)
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where we used un = un+N for n = 0, 1. The same calculation applies when n = 2, . . . , N . We have obtained
a coupled system of differential equations, that can be solved inserting the exponential ansatz given in the
hint, un = Aei(kna−ωt) where A is some constant. We obtain:

−mω2Aei(kna−ωt) = Aei(kna−ωt)
[

λ(eika + e−ika − 2)−mΩ2
]

⇔ ω2 = 2
λ

m
(1− cos ka) + Ω2, (S.4)

i.e., the dispersion relation

ω(k) =

√

2
λ

m
(1− cos ka) + Ω2. (S.5)

The resulting spectrum is plotted in Fig. 1. When Ω 6= 0 the spectrum has a gap, such that no propagation
is allowed below the cut-off frequency ω(k) = Ω. When Ω = 0 the spectrum is gapless and lattice
perturbations of arbitrarily small frequency can propagate. Imposing PBC on the lattice, un = un+N

one is able to solve for the wave-number k, i.e.,

Aei(kna−ωt) = Aei(ka(n+N)−ωt) ⇔ eikNa = 1 = e2πl l ∈ Z → k = kl =
2πl

Na
, l = 1 . . . N (S.6)

The corresponding frequencies are usually called normal modes, ω(k) = ω(kl). The general solution of the
E-L equations is then given by (3), as an expansion over normal modes. Specifying the initial conditions
un(t = 0) and u̇n(t = 0) ∀n identifies a particular solution of the differential system (S.2).

(3 (2 (1 0 1 2 3

kl

ω
(k

l
)

 

 

Ω = 0
Ω != 0

Ω

Figure 1: Phonon dispersion with and without pinning Ω (we shifted l to the first Brillouin zone −N/2 ≤ l <
N/2, a = 1).

The long-wavelength regime is characterized by small wave-numbers, kl ≪ 1/a. Expanding the cosine
contained in the dispersion relation for kl ≪ 1/a, one obtains a linear spectrum:

ω(kl) ≈
√

λ

m
k2
l a

2 +Ω2 Ω=0
=

√

λ

m
|kl|a = cp|kl|a, (S.7)

such that cp =
√

λ/m is associated to the velocity of propagation of sound waves in the lattice.

b) Identify the conjugated momenta πn(t) and write down the Hamiltonian for the system
through a Legendre transformation.

Solution. According to the Hamiltonian formalism, the canonical momentum πn conjugate to un reads:

πn =
∂L
∂u̇n

= mu̇n = −im
N
∑

l=1

ωl[Ale
i(klna−ωlt) − c.c.] n = 1, . . . , N. (S.8)

The Hamiltonian is obtained via a Legendre transformation, as follows:

H(π1, . . . , πN , u1, . . . , uN ) ≡ H(πn, un) =
N
∑

n=1

u̇nπn − L =
1

2

N
∑

n=1

[

π2
n

m
+ λ(un+1 − un)

2 +mΩ2u2
n

]

. (S.9)

c) We set m = 1 and introduce the dimensionless operators âl =
√
N
√

2ωl
~
Âl, satisfying

[âl, â
†
l′
] = δll′ . Use them to elevate un(t), πn(t) to quantum operators ûn(t), π̂n(t). Prove

the equal-time canonical commutation relation [ûn(t), π̂n′(t)] = i~δnn′ .

2



Solution. Following the suggestion above, we write the position and momentum in terms of the dimen-
sionless operators âl, â

†
l , as follows:

ûn(t) =
1√
N

N
∑

l=1

√

~

2ωl

[

âle
i(klna−ωlt) + h.c.

]

≡ 1√
N

N
∑

l=1

√

~

2ωl

[

âl(t)e
iklna + h.c.

]

,

π̂n(t) = −i
1√
N

N
∑

l=1

√

~ωl

2

[

âle
i(klna−ωlt) − h.c.

]

≡ −i
1√
N

N
∑

l=1

√

~ωl

2

[

âl(t)e
iklna − h.c.

]

,

(S.10)

We now prove the canonical commutation relation, making use of the postulated bosonic algebra [âl, â
†

l′ ] =
δll′ .

[ûn(t), π̂n′(t)] =
1

N

i~

2

∑

ll′

√

ωl′

ωl

(

[âl, â
†

l′ ]e
i[(kln−kl′n

′)a−(ωl−ωl′ )t] − [â†
l , âl′ ]e

−i[(kln−kl′n
′)a+(ωl−ωl′ )t]

)

=

=
1

N

i~

2

∑

l

(

eikl(n−n′)a + e−ikl(n−n′)a
)

=
i~

N

N
∑

l=1

cos[(2πl)(n− n′)/N ] = i~ δnn′ .

(S.11)

The sum in the last passage is calculated as follows. If n = n′ the sums gives N . If n 6= n′ we exploit the
algorithm:

S =
N
∑

l=1

µl → Sµ = S − µ+ µN+1 → S =
µ− µN+1

1− µ
, (S.12)

such that the sum in (S.11) becomes:

N
∑

l=1

(

eikl(n−n′)a + e−ikl(n−n′)a
)

=
cos[2π(n− n′)/N ]− cos[2π(n− n′)(N + 1)/N ]

1− cos[2π(n− n′)/N ]
∝ sin[π(n− n′)] = 0.

(S.13)
Note, that this is equivalent to the known completeness of the basis vectors of a Fourier series, i.e.,

N
∑

l=1

e2πil(n−n′)/N = Nδnn′ . (S.14)

On the other hand, in order to preserve the commutation relations in Fourier (reciprocal) space, [âl, â
†

l′ ] =
δll′ , orthogonality is required, i.e.,

N
∑

n=1

e2πin(l−l′)/N = Nδll′ , (S.15)

which is fully consistent with the equivalence of the two representations.

d) Write the Hamiltonian in (c) in terms of the new operators âl, â
†
l
. Write a general eigen-

state. What is the ground state? What defines an excited state?

Solution. We calculate each term in (S.9) separately, starting from:

π̂2
n

2
=

∑

ll′

−~
√
ωlωl′

4N

[

(âlâl′)(t)e
i(kl+kl′ )na − (âlâ

†

l′)(t)e
i(kl−kl′ )na − (â†

l âl′)(t)e
i(kl′−kl)na + (â†

l â
†

l′)(t)e
−i(kl+kl′ )na

]

=

=
∑

ll′

~
√
ωlωl′

4N

[

2(â†
l âl′)(t)e

i(kl′−kl)na − (âlâl′)(t)e
i(kl+kl′ )na − (â†

l â
†

l′)(t)e
−i(kl+kl′ )na

]

+
∑

l

~ωl

4N
.

(S.16)

From the first line to the second line we exchanged l, l′ in the second summand and made use of the bosonic
algebra of the operators. Exploiting (S.15) we can finally calculate:

1

2

N
∑

n=1

π̂2
n =

∑

l

~ωl

4

[

2â†
l âl − âlâ−le

−2iωlt − â†
l â

†
−le

2iωlt
]

+
∑

l

~ωl

4
, (S.17)

in which we used the parity property of the cosine, i. e., ωl = ω−l. We are now following the most general
approach in which l ∈ Z, despite in the present case l ∈ N. We will see that the two time-dependent
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contributions above will be eliminated by the position terms in the Hamiltonian; in the present case of
l ∈ N those terms are immediately zero as l′ cannot be equal to −l, but we decided to keep them in order
to remain as general as possible. In the same way we obtain for the remaining terms in (S.9),

Ω2û2
n

2
=

∑

ll′

~Ω2

4N
√
ωlωl′

[

(âlâl′)(t)e
i(kl+kl′ )na + (âlâ

†

l′)(t)e
i(kl−kl′ )na + (â†

l âl′)(t)e
i(kl′−kl)na + (â†

l â
†

l′)(t)e
−i(kl+kl′ )na

]

=

=
∑

ll′

~Ω2

4N
√
ωlωl′

[

2(â†
l âl′)(t)e

i(kl′−kl)na + (âlâl′)(t)e
i(kl+kl′ )na + (â†

l â
†

l′)(t)e
−i(kl+kl′ )na

]

+
∑

l

~Ω2

4Nωl
,

(S.18)

and

Ω2

2

N
∑

n=1

û2
n =

∑

l

~Ω2

4ωl

[

2â†
l âl + âlâ−le

−2iωlt + â†
l â

†
−le

2iωlt
]

+
∑

l

~Ω2

4ωl
. (S.19)

Finally,

λ

2

N
∑

n=1

(ûn+1 − ûn) =
∑

l

2~λ[1− cos(kla)]

4ωl

[

2â†
l âl + âlâ−le

−2iωlt + â†
l â

†
−le

2iωlt
]

+
∑

l

2~λ[1− cos(kla)]

4ωl
.

(S.20)
Combining (S.19) with (S.20) and making use of the dispersion relation (S.5) one obtains:

(S.19) + (S.20) =
∑

l

~ωl

4

[

2â†
l âl + âlâ−le

−2iωlt + â†
l â

†
−le

2iωlt
]

+
∑

l

~ωl

4
, (S.21)

and finally the Hamiltonian Ĥ = (S.17) + (S.21), i.e.,

Ĥ =

N
∑

l=1

~ωl

(

â†
l âl +

1

2

)

, (S.22)

which is explicitly time independent. The state

|Np〉 = |n1, n2, . . . , nN 〉 =
N
∏

l=1

1√
nl!

(

â†
l

)nl |0〉 , (S.23)

with Np =
∑N

l=1 nl, is an eigenstate of the Hamiltonian with energy

Ĥ |Np〉 =
N
∑

l=1

~ωl

(

nl +
1

2

)

|Np〉 =
N
∑

l=1

ǫl |Np〉 = ǫp |Np〉 . (S.24)

In (S.23), |0〉 is the unique ground state of the system, defined by âl |0〉 = 0 ∀ l = 1, . . . , N , with energy

ǫ0 =
1

2

N
∑

l=1

~ωl. (S.25)

The state (S.23) is normalized to 1 and lives in the Fock space, which is a direct sum of the Hilbert spaces
HNp of fixed total number of particles Np. They in turn are symmetric tensor products of Np single-particle
Hilbert spaces. The occupation number nl defines the number of excitations in the mode l. Excited states,
i.e., with at least one non-zero nl, obey Bose-Einstein statistics and are called phonons.

Exercise 2. Planets as blackbodies?

The Stefan-Boltzmann law states that the emission power per unit surface area of a blackbody
reads

Pem = σT 4 with σ =
π2k4

B

60~3c2
≈ 5.6704 · 10−8 Js−1m−2K−4. (4)

a) Making use of the Stefan-Boltzmann law, estimate the temperature of the Earth, Mars
and Venus as if they were blackbodies.

Hint. The energy emitted and absorbed has to balance.
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Solution. The Stefan-Boltzmann law gives a power per unit surface of emission. In order to estimate the
temperature of the Earth as if it was a blackbody, we need to equate the energy emitted with the energy
absorbed (Kirchoff’s law). The Earth absorbs the radiation from the Sun, therefore we need to calculate
the amount of solar energy that reaches us. In order to calculate the total power emitted by the Sun we
need to integrate (4) over the Sun’s surface, i.e.,

PS = Pem · 4πR2
S = σT 4

S · 4πR2
S , (S.26)

where TS and RS are the Sun surface temperature and radius, respectively. This power is spread all over
the universe, and reaches the Earth after traveling the average distance a0 (also called astronomical unit).
Therefore, the power per unit surface reaching the Earth is

pabs =
PS

4πa2
0

≈ 1.4 · 103 W. (S.27)

In order to obtain the total power absorbed by the Earth we finally need to multiply the quantity above
with the cross section of the Earth sphere, i.e,

Pabs =
PS

4πa2
0

·πR2
E =

PSR
2
E

4a2
0

(S.28)

where RE is the Earth radius. The total power emitted by the Earth is still given by integrating (4) over
the Earth surface,

PE = Pem · 4πR2
E = σT 4

E · 4πR2
E , (S.29)

where TE is the temperature we want to estimate. We thus equate the emitted and absorbed power:

σT 4
E · 4πR2

E =
σT 4

SR
2
E4πR

2
S

4a2
0

⇔ T 4
E = T 4

S
R2

S

4a2
0

⇔ TE = TS

√

RS

2a0
, (S.30)

which is independent of the Earth radius. Using for TS ≈ 5778K, for RS ≈ 6.96 · 108 m and for a0 ≈
1.496 · 1011m we obtain

TE ≈ TS · 1.525 · 10−3/2 ≈ 279K. (S.31)

We can exploit the calculation above in the cases of the other planets, making use of aM = 1.524a0 (average
distance of Mars from the Sun) and aV = 0.7233a0 (average distance of Venus from the Sun) to get:

TM ≈ TS · 1.236 · 10−3/2 ≈ 226K,

TV ≈ TS · 1.793 · 10−3/2 ≈ 328K.
(S.32)

b) The correct results for the average temperatures are 288K for the Earth, 218K for Mars
and 735K for Venus. How do they compare with the estimates in (a)? What could be the
reasons of the discrepancies?

Solution. There are many approximations in the calculation (a). There are mainly two effects, one

lowering and one increasing the real temperature. First, all planets have albedo, such that part of the

incoming solar radiation is scattered without absorption. This effect reduces the absorbed power and

therefore the temperature. On the other hand, planets have an atmosphere, such that both the incoming

and the emitted radiation suffer from reflection. The exact effect of the atmosphere is very complicated.

For the Earth it turns out that the amount of radiation emitted from the surface (which, due to the lower

temperature, has a higher wavelength) suffers more from reflection than the incoming Sun’s radiation

(mainly in the visible range of the electromagnetic spectrum), such that the resulting temperature of the

Earth is slightly higher than the blackbody estimate. A similar reasoning is valid for the other planets,

whose atmospheres are mainly composed of CO2, with the important difference that the atmosphere of

Mars is much thinner (therefore yielding a good estimate) while the one of Venus is much thicker (therefore

yielding a bad estimate). Then, planets are not exactly spheres..:-)
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Statistical Physics.

Solutions Sheet 6.

HS 2013
Prof. Manfred Sigrist

Exercise 1. Playing around with wave functions in second quantization.

In the formalism of second quantization, a general state of N particles at positions ~r1, ~r2, ... is
given by

|~r1, ~r2, ..., ~rN 〉 = 1√
N !

Ψ̂† (rN ) · · · Ψ̂† (r1) |0〉 , (1)

where |0〉 is the vacuum state and the field operators Ψ̂ (~r) are defined as

Ψ̂ (~r) =
∑

k

φk (~r) âk , (2)

with âk the annihilator of mode k and φk (~r) the one-particle wave function of mode k.

Consider a state |ψ〉 of three particles in modes k1, k2, and k3. Consider its wave function

ψ (~r1, ~r2, ~r3) = 〈~r1, ~r2, ~r3 |ψ〉 = 〈~r1, ~r2, ~r3 |â†k3 â
†
k2
â†
k1
|0〉 . (3)

(a) First calculate the vacuum expectation value

〈0|âℓ1 âℓ2 âℓ3 â
†
k3
â†
k2
â†
k1
|0〉 , (4)

for bosons and for fermions.

Solution. Let’s calculate using the usual (anti-)commutation relations (write for short â3 = âk3
, â2 = âk2

,

â1 = âk1
):

âlâmânâ
†
3â

†
2â

†
1 = âlâm

[

δnk3
± â†3ân

]

â†2â
†
1 = âl

[

âmδnk3
±

(

δmk3
± â†3âm

)

ân
]

â†2â
†
1

= [âlâmδnk3
± âlδmk3

ân + δlk3
âmân] â

†
2â

†
1 + â†(. . .)

= [(âlδmk2
± δlk2

âm) δnk3
± δmk3

(âlδnk2
± δlk2

ân) + δlk3
(âmδnk2

± δmk2
ân)] â

†
1 + â†(. . .)

= δlk1
δmk2

δnk3
± δlk2

δmk1
δnk3

± δlk1
δmk3

δnk2
+ δlk2

δmk3
δnk1

+ δlk3
δmk1

δnk2
± δlk3

δmk2
δnk1

+ â†(. . .)

=
∑

ijk

fijkδlki
δmkj

δnkk
+ â†(. . .) , (S.1)

where the sum ranges over all sets of indices ijk which are all different, and where fijk = ǫijk is the

fully antisymmetric tensor (Levi-Civita) for fermions and fijk = 1 for bosons. We do not care about the

terms which start by a creation operator (all symbolized above by â†(. . .)), because they will vanish once

sandwiched between vacuum states. The vacuum expectation value is then

〈0|âlâmânâ†3â†2â†1 |0〉 =
∑

ijk

fijkδlki
δmkj

δnkk
. (S.2)

For N particles, by similar procedure the expression generalizes to

〈0|âℓ1 . . . âℓN â†kN
. . . â†k1

|0〉 =
∑

i1...iN

fi1...iN δℓ1ki1
. . . δℓNkiN

. (S.3)

(b) Determine ψ(~r1, ~r2, ~r3) for bosons and for fermions. What symmetries does the wave
function possess?
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Solution. The wave function is

ψ (~r1, ~r2, ~r3) =
1√
N !

〈0|Ψ̂1Ψ̂2Ψ̂3â
†
3â

†
2â

†
1 |0〉 =

1√
N !

∑

lmn

φ∗
l (~r1)φ

∗
m(~r2)φ

∗
n(~r3) 〈0|âlâmânâ†3â†2â†1 |0〉

=
1√
N !

∑

fijk δlki
δmkj

δnkk
φ∗
l (~r1)φ

∗
m(~r2)φ

∗
n(~r3) =

1√
N !

∑

fijk φ
∗
ki
(~r1)φ

∗
kj
(~r2)φ

∗
kk
(~r3) . (S.4)

Thus, the wave function is an explicit symmetrization (antisymmetrization) of φ∗
k1
(~r1)φ

∗
k2
(~r2)φ

∗
k3
(~r3) for

bosons (fermions).

(c) Determine the normalization of the wave function for fermions and for bosons. First
consider the case where k1, k2 and k3 are all different, and then study the case where two
or more modes are the same. What do you observe?

Solution. Recall the wave function is given by

ψ(~r1, ~r2, ~r3) =
1√
3!

∑

ijk

fijk φ
∗
ki
(~r1)φ

∗
kj
(~r2)φ

∗
kk
(~r3) , (S.5)

and thus its normalization is
∫

d3~r1d
3~r2d

3~r3 ψ
∗(~r1, ~r2, ~r3)ψ(~r1, ~r2, ~r3)

=
1

3!

∑

fijkfi′j′k′

∫

d3~r1d
3~r2d

3~r3 φ
∗
ki
(~r1)φki′

(~r1) φ
∗
kj
(~r2)φkj′

(~r2) φ
∗
kk
(~r3)φkk′ (~r3)

=
1

3!

∑

fijkfi′j′k′

∫

d3~r1 φ
∗
ki
(~r1)φki′

(~r1)

∫

d3~r2 φ
∗
kj
(~r2)φkj′

(~r2)

∫

d3~r3 φ
∗
kk
(~r3)φkk′ (~r3)

=
1

3!

∑

fijkfi′j′k′ δkiki′
δkjkj′

δkkkk′ . (S.6)

This expression obviously generalizes to N particles as

〈ψ |ψ〉 = 1

N !

∑

i1...iN ,

i′
1
...i′N

fi1...iN fi′1...i′N δki1
k
i′
1

· · · δkiN
k
i′
N

. (S.7)

Assuming that k1, k2, k3 are all different in (S.6), then all terms in the sum that don’t satisfy i = i′, j =

j′, k = k′ vanish because of the orthgonality of the single-particle states, and thus

〈ψ |ψ〉 = 1

3!

∑

f2
ijk δkiki′

δkjkj′
δkkkk′ =

1

3!

∑

f2
ijk = 1 . (S.8)

Additionally, if two or more modes are equal (e.g., k1 = k2), then all possible permutations of matching

modes must be included (e.g., if k1 = k2, then the term i = j′, j = i′, k = k′ also needs to be counted in

the above), multiplying the result by an additional factor Nn! for each repeated mode n (Nn then being

the number of particles in mode n):

〈ψ |ψ〉 = N1! · · · =
∏

modes

Nn! (S.9)

Of course, for fermions Nn is either zero or one, such that these factors do not contribute. However they

must be included for bosons.

Note: for the lazy, it is also possible to do the whole exercise with two particles only. For the motivated,

calculate it for N particles.
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Exercise 2. Magnetostriction in a Spin-Dimer-Model.

m

~S1
~S2

0 x

d

ω

m

As in Exercise 2.3, we consider a dimer consisting of
two spin-1/2 particles with the Hamiltonian

H0 = J
(

~S1 · ~S2 + 3/4
)

,

with J > 0 (note that the energy levels are shifted as
compared to Ex. 2.3). This time, however, the distance
between the two spins is not fixed, but they are connected to a spring. The spin–spin coupling
constant depends on the distance between the two sites such that the Hamilton operator of the
system is

H =
p̂2

2m
+
mω2

2
x̂2 + J(1− λx̂)

(

~S1 · ~S2 + 3/4
)

, (5)

where λ ≥ 0, m is the mass of the two constituents, mω2 is the spring constant and where x
denotes the displacement from the equilibrium distance d between the two spins (in the case of
no spin-spin interaction).

(a) Write the Hamiltonian (5) in second quantized form and calculate the partition sum, the
internal energy, the specific heat and the entropy. Discuss the behavior of the entropy in
the limit T → 0 for different values of λ.

Hints. Set ~ = 1. Rewrite the Hamiltonian using the total spin as in Exercise 2.3, and bring it by
completing the square to the form

H =
p̂2

2m
+

1

2
mω2 X̂2 + J̃ n̂t , (6)

where n̂t is the projector on the triplet subspace, and X̂ and J̃ are appropriately shifted quantities

x̂ and J (X̂ may depend on n̂t). Recall then the creation and annihilation operators of a harmonic

oscillator.

(b) Calculate the expectation value of the distance between the two spins, 〈d + x̂〉, as well
as the fluctuation, 〈(d + x̂)2〉. How are these quantities affected by a magnetic field in
z-direction, i.e., by adding an additional term in (5) of the form

Hm = −gµBH
∑

i

Ŝz

i ?

Hints. Write first those averages in terms of 〈n̂t〉, which you can calculate explicitly. Recall that
for a harmonic oscillator, 〈X̂〉 vanishes, as well as 〈â〉, 〈â2〉 etc.
Recalculate the partition function adding the magnetic field term and see how this affects 〈n̂t〉.

(c*) If the two sites are oppositely charged, i.e., ±q, the dimer forms a dipole with moment
P = q 〈d+ x̂〉. This dipole moment can be measured by applying an electric field E along
the x-direction, resulting in the additional Hamiltonian term

Hel = −q(d+ x̂)E .

Calculate the susceptibility of the dimer at zero electric field,

χ
(el)
0 = − ∂2F

∂E2

∣

∣

∣

∣

E=0

,

3



and compare your result with the simple form of the fluctuation-dissipation theorem, which
asserts that

χ
(el)
0 ∝

〈

(d+ x̂)2
〉

−
〈

d+ x̂
〉2
. (7)

Hint. Proceeding as in Section 1.5.3 of the lecture notes or Exercise 2.1 (e), find out which step

no longer applies. How should (7) be “corrected”?

Plot the susceptibility at zero electric field as a function of an applied magnetic field H
and discuss your result.

Solution.

(a) As in Exercise 2.3, the Hamiltonian H0 may be written in terms of the total spin operator ~S = ~S1 + ~S2,

H0 = J
~S2

2
.

Let us set ~ = 1. Then 〈σ|~S2|σ〉 = ~
2S(S + 1) = S(S + 1) with S = 0, 1 for the singlet and a triplet state,

respectively, so that n̂t := ~S2/2 is just the projection operator onto the triplet subspace, satisfying

〈σ|n̂t|σ〉 =
{

1 if σ is a triplet

0 if σ is a singlet

Using this operator, the total Hamiltonian has the form

H =
p̂2

2m
+
mω2

2
x̂2 + J (1− λx̂) n̂t

=
p̂2

2m
+
mω2

2
X̂2 + J̃ n̂t,

where we have “completed the square” and introduced the shifted coordinate operator

X̂ = x̂− Jλ

mω2
n̂t , (S.10)

and the renormalized spin-spin coupling

J̃ = J

(

1− Jλ2

2mω2

)

(S.11)

and used the fact that n̂2
t = n̂t (it is a projection operator).

We note that X̂ and p̂ satisfy the same commutation relation as x̂ and p̂. Therefore we may introduce the

corresponding raising and lowering operators

â =

√
mω

2

(

X̂ +
i

mω
p̂

)

â† =

√
mω

2

(

X̂ − i

mω
p̂

)

using which the Hamiltonian can be written as follows in second-quantized form:

H = ω
(

â†â+
1

2

)

+ J̃ n̂t . (S.12)

The canonical partition sum is

Z = tre−βH =
∞∑

n=0

∑

σ

〈n, σ|e−βH|n, σ〉 ,

where |n〉 denotes the eigenstates of â†â. We observe that the harmonic oscillator term commutes with the

spin dimer term in the Hamiltonian. Therefore, the partition function factorizes,

Z = Zharmonic oscillator · Zspin dimer . (S.13)
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The partition function of the harmonic oscillator is given by

Zharmonic oscillator = tr e−β Hharm. osc. =
∑

n

e−β ω(n+ 1

2
) = e−βω/2 1

1− e−βω
. (S.14)

The partition function of the dimer is simply given by

Zspin dimer = 1
︸︷︷︸

singlet state
n̂t=0

+ 3e−βJ̃

︸ ︷︷ ︸

triplet states
n̂t=1

.

We then finally have

Z = Zharmonic oscillator · Zspin dimer =
e−βω/2

1− e−βω

(

1 + 3e−βJ̃
)

, (S.15)

It follows that the internal energy is given by

U = − ∂

∂β
logZ = − ∂

∂β
logZharmonic oscillator −

∂

∂β
logZspin dimer

=
ω

2
+

ω

eβω − 1
+

3J̃

eβJ̃ + 3
=
ω

2
coth

βω

2
+

3J̃

eβJ̃ + 3
.

Therefore, specific heat, free energy and entropy are given by

C =
∂U

∂T
= Charmonic oscillator + Cspin dimer

=
ω2

4kBT 2

1

sinh2(βω/2)
+

3J̃ 2

kBT 2

eβJ̃

(eβJ̃ + 3)2
,

F = −kBT logZ = Fharmonic oscillator + Fspin dimer

=
ω

2
+ kBT log(1− e−βω)− kBT log(1 + 3e−βJ̃),

S =
U − F

T
=

ω

T (eβω − 1)
− kB log(1− e−βω) +

3J̃

T (eβJ̃ + 3)
+ kB log(1 + 3e−βJ̃).

Note that the first two terms of the entropy always vanish in the limit T → 0.

As long as J̃ is positive, it is easy to see that limT→0 S = 0. In particular, this is the case for λ = 0, where

J̃ = J .

If we make λ large enough, namely λ > λc :=
√

2mω2/J , then J̃ becomes negative and the entropy is in

the limit T → 0 given by

lim
T→0

S = lim
T→0

(
J̃

T
+ kB log 3e−J̃/kBT

)

= kB log 3.

For λ = λc, J̃ is equal to zero and limT→0 S = kB log 4.

This result corresponds, of course, to the number of degenerate ground-states for the spin configuration:

For positive J̃ , the ground-state is unique (the singlet) and thus the entropy has to vanish as T → 0.

For negative J̃ , the ground-state is the triplet and thus three-fold degenerate. When there is no effective

coupling between the spins then there are four degenerate ground-states, leading to an entropy of kB log 4.

(b) The mean distance between the two sites is given by

〈d+ x̂〉 =
〈

d+ X̂ +
Jλ

mω2
n̂t

〉

= d+
Jλ

mω2
〈n̂t〉,

where we used (S.10) and the fact that the expectation value of the (shifted) position operator X̂ for the

harmonic oscillator vanishes. The expectation value of the “number” operator n̂t is computed using the

fact that the partition sum factorizes,

〈n̂t〉 =
1

Zspin dimer

∑

σ

〈σ |n̂te
−βJ̃n̂t |σ〉 = 3e−βJ̃

Zspin dimer
=

3e−βJ̃

1 + 3e−βJ̃
. (S.16)

Therefore, we find for the expectation value of the distance between the two spins

〈d+ x̂〉 = d+
Jλ

mω2

3

eβJ̃ + 3
.
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To calculate the fluctuations of the distance, we write

〈(d+ x̂)2〉 =
〈(

d+ X̂ +
Jλ

mω2
n̂t

)2
〉

= d2 + 〈X̂2〉+ Jλ

mω2

(

2d+
Jλ

mω2

)

〈n̂t〉, (S.17)

where we have already omitted terms linear in X̂ and used that n̂2
t = n̂t. For a harmonic oscillator,

〈X̂2〉 = 〈
(

1√
2mω

(

â+ â†
))2

〉 = 1

mω
〈â†â+ 1

2
〉 = 1

mω

(
1

2
+

1

eβω − 1

)

, (S.18)

because â†â is the bosonic number operator of the harmonic oscillator, and we know that its average gives

the Bose statistics.1 We thus find that

〈(d+ x̂)2〉 = d2 +
1

mω

(
1

2
+

1

eβω − 1

)

+
Jλ

mω2

(

2d+
Jλ

mω2

)

〈n̂t〉 , (S.19)

with 〈n̂t〉 given by (S.16).

In the presence of a magnetic field, the only change is in 〈n̂t〉. (Indeed, we did the calculation of the

fluctutations without assuming anything about the density operator on the spin part of the dimer, and

keeping the abstract averaging operation 〈·〉.) We need to recalculate the partition function though:

Zdimer with H = tr e−β(J̃ n̂t−gµBH Sz
tot) = 1 + e−βJ̃ n̂t

(

e−βgµBH + 1 + eβgµBH
)

= 1 + e−βJ̃ n̂t (1 + 2 cosh (βgµBH)) . (S.20)

It follows then that

〈n̂t〉 =
1

Zdimer with H

∑

σ

〈σ |n̂t e
−β(J̃n̂t+Hm) |σ〉 = e−βJ̃ (1 + 2 cosh(βgµBH))

1 + e−βJ̃ (1 + 2 cosh(βgµBH))
. (S.21)

Note that 〈n̂t〉 is a monotonously increasing function of |H|. Thus, by applying a magnetic field we

can populate the triplet states and thereby increase the distance between the spins. This effect is called

magnetostriction.

(c) We first consider the case without external magnetic field. Then the Hamiltonian is given by

H =
p̂2

2m
+
mω2

2
X̂2 + J̃ n̂t −

q2E2

2mω2
− dqE , (S.22)

where now

X̂ = x̂− Jλ

mω2
n̂t −

qE

mω2
, (S.23a)

J̃ = J

(

1− Jλ2

2mω2
− λqE

mω2

)

. (S.23b)

In the same way as in (a), we find that the partition sum is given by

Z =
e−βω/2

1− e−βω

(

1 + 3e−βJ̃
)

eβ(dqE+q2E2/(2mω2)) ,

and the free energy is therefore

F = −dqE − q2E2

2mω2
+
ω

2
+ kBT log(1− e−βω)− kBT log(1 + 3e−βJ̃).

1 If you’re not convinced, or if you forgot how to prove this:

1

mω
〈â†â+ 1

2
〉 = 1

mω
· Z−1

harm. osc. · tr
[(

â†â+
1

2

)

e−βω(â†â+ 1

2
)
]

=
1

mω
· Z−1

harm. osc. ·
(

− 1

β

∂

∂ω
tr
[

e−βω(â†â+ 1

2
)
])

= − 1

mω

1

β

∂

∂ω
logZharm. osc.

= − 1

mω

1

β

(

−β
2
− 1

1− e−βω
·
(

−e−βω
)

· (−β)
)

=
1

mω

(
1

2
+

1

eβω − 1

)

.
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In order to compute the susceptibility, we have to differentiate the free energy twice with respect to the

electric field E. Only for the last term this is somewhat non-obvious: the first differentiation yields

∂

∂E
kBT log(1 + 3e−βJ̃) =

3

eβJ̃ + 3
J
λq

mω2
=

Jλq

mω2

3

eβJ̃ + 3
.

Taking one more derivative we find that

∂2

∂E2
kBT log(1 + 3e−βJ̃) = β

(
Jλq

mω2

)2
3eβJ̃

(
eβJ̃ + 3

)2 .

For E = 0, this can simply be expressed in terms of the mean triplet number,

∂2

∂E2

∣
∣
∣
∣
E=0

kBT log(1 + 3e−βJ̃) = β

(
Jλq

mω2

)2
(
〈n̂t〉 − 〈n̂t〉2

)
;

indeed, from (S.16), we have

〈n̂t〉 − 〈n̂t〉2 =
3e−βJ̃

(

1 + 3e−βJ̃
)

−
(

3e−βJ̃
)2

(
1 + 3e−βJ̃

)2 =
3e−βJ̃

(
1 + 3e−βJ̃

)2 =
3eβJ̃

(
eβJ̃ + 3

)2 . (S.24)

Therefore, the susceptbility at zero electric field is given by

χ
(el)
0 =

q2

mω2
+ β

(
Jλq

mω2

)2
(
〈n̂t〉 − 〈n̂t〉2

)
. (S.25)

If we try to use the fluctuation-dissipation theorem to calculate the susceptibility at zero electric field, we

find that

〈(d+ x̂)2〉 − 〈(d+ x̂)〉2

= d2 + 〈X̂2〉+
( Jλ

mω2

)(

2d+
Jλ

mω2

)

〈n̂t〉 − d2 − 2d
( Jλ

mω2

)

〈n̂t〉 −
( Jλ

mω2

)2

〈n̂t〉2

= 〈X̂2〉+
( Jλ

mω2

)2 (
〈n̂t〉 − 〈n̂t〉2

)
. (S.26)

Obviously, this is not proportional to the result found in (S.25).

This discrepancy is due to the fact that this simple form of the fluctuation-dissipation theorem is only

valid for classical systems (or simple quantum systems).2 In this case, the coupling does not commute

with the rest of the Hamiltonian. However, it is still possible to apply the reasoning done in Section 1.5.3

of the lecture notes and Exercise 2.1 (e) by looking at the “correct” quantities. We will proceed with an

analogous derivation here, and we will point out the step where the derivation fails for the “incorrect”

choice of variables. There, the fluctuation-dissipation theorem is derived for magnetization M produced in

response to a magnetic field H with some susceptibility χM . Here, distance (d+ x̂) is produced in response

to an electric field E with some susceptibility χ
(el)
0 . In both situations, we have added a linear coupling

term to the Hamiltonian of the form −M ·H, respectively −q (d+ x̂) ·E. However, the “correct” degree of

freedom of the Harmonic oscillator is X̂, and not x̂. The difference is that now x̂ is dependent on E and

not X̂. Proceeding as for the magnetization case, we write

0 = tr
{

(〈d+ x̂〉 − (d+ x̂)) eβ(F−H)
}

, (S.27)

and we differentiate this equation by E. Here we notice a first few differences with the magnetization case.

While we had M = − ∂H
∂H

, if we calculate ∂H
∂E

we obtain

∂H
∂E

= −q
(
qE

mω2
+ d− Jλ

mω2
n̂t

)

= −q
(

d+ x̂− X̂
)

, (S.28)

2 To convince oneself, a simpler setup is to consider a harmonic oscillator with a charged particle in a uniform

electric field, both in the classical and in the quantum case, which is a simplification of the current problem but

which exhibits similar behavior. (Use H = p2

2m
+ 1

2
mω2x2 − qxE)
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where we used (S.23a) in the second equality. Note that this quantity is proportional to n̂t and commutes

with original Hamiltonian (this will be relevant later). This gives us for the free energy3

∂F

∂E
=

〈
∂H
∂E

〉

= −q 〈d+ x̂〉 ; (S.29)

we also need the derivative of d+ x̂, given by

∂

∂E
(d+ x̂) =

∂

∂E

(

d+ X̂ +
Jq

mω2
n̂t +

qE

mω2

)

=
q

mω2
.

Now, differentiating expression (S.27) by E,

0 =
∂

∂E
tr
{

(〈d+ x̂〉 − (d+ x̂)) eβ(F−H)
}

= tr

{(
∂〈d+ x̂〉
∂E

− ∂

∂E
(d+ x̂)

)

eβ(F−H)

}

+ tr
{

[〈d+ x̂〉 − (d+ x̂)] eβ(F−H) · β ·
(

−q〈d+ x̂〉+ q
(

d+ x̂− X̂
))}

. (S.30)

But wait. The differentiation of the operators inside the second trace needs a little bit of justification here.

First, we can rely on some basic differentiation rules for operators such as

∂

∂E
tr (. . .) = tr

∂

∂E
(. . .) and

∂

∂E
(AB) =

∂A

∂E
B +A

∂B

∂E
.

Then, in general, for an operator A and a function f , one has that

∂

∂E
f(A) =

∑

n

cn
∂

∂E
An =

∑

n

cn

(
∂A

∂E
An−1 +A

∂A

∂E
An−2 + . . .

)

, (S.31)

where cn are the coefficients of the Taylor expansion of f in terms of a power series.4 Now, assuming that

[A, ∂A
∂E

] = 0, we see that ∂A
∂E

commutes through the A’s and we can write

∂

∂E
f(A) =

∑

n

cnnA
n−1 ∂A

∂E
= f ′(A)

∂A

∂E
. (S.32)

In our case, we have that ∂H
∂E

∝ n̂t commutes with H, and so

∂

∂E
e−βH = −βe−βH · ∂H

∂E
.

Note, crucially, that had we chosen to work with the other degree of freedom x̂ (having X̂ depend on E

and not x̂), we would have had ∂H
∂E

= −q (d+ x̂), which obviously does not commute with H.

The second term of (S.30) is then obtained by using

∂

∂E
eβ(F−H) =

∂

∂E
eβF e−βH = eβFβ

(
∂F

∂E

)

e−βH + eβF (−β) e−βH ∂H
∂E

= βeβ(F−H)

(
∂F

∂E
− ∂H
∂E

)

,

keeping in mind that F is a scalar, not an operator.

Continuing from (S.30), we find that

−1

q

∂2F

∂E2
− q

mω2
= β · q ·

〈[

〈d+ x̂〉 − (d+ x̂)
]2

+ X̂
[

〈d+ x̂〉 − (d+ x̂)
]〉

= βq

〈[

〈d+ x̂〉 − (d+ x̂)
]2
〉

+ βq

〈

X̂
[

X̂ +
Jλ

mω2
n̂t +

qE

mω2

]〉

= βq
[〈
(d+ x̂)2

〉
− 〈d+ x̂〉2

]
+ βq 〈X̂〉

3 In general, for an external parameter E the Hamiltonian can depend on, one has

∂F

∂E
= − 1

β

∂

∂E
logZ = − 1

β

1

Z

∂

∂E
tr
[

e−βH
]

=
1

Z
tr

[

e−βH ∂H
∂E

]

=

〈
∂H
∂E

〉

,

where the differentiation inside the trace can be justified by using the Taylor expansion of the exponential and

using the cyclicity of the trace, without assuming that [H, ∂H
∂E

] = 0.
4Note that if we enclose Eq. (S.31) inside a trace, then we can use the cyclicity of the trace to prove the

assertion in the previous footnote.
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where we have used that ∂〈d+x̂〉
∂E

= − 1
q

∂
∂E

∂F
∂E

= − 1
q

∂2F
∂E2 , expressed x̂ as function of X̂ using (S.23a),

repeatedly used 〈X̂〉 = 0, and noticed also 〈X̂n̂t〉 = 〈X̂〉H.O.〈n̂t〉spin = 0 since X̂ and n̂t act on different

subsystems. It follows that

χ
(el)
0

βq2
− 1

βmω2
=

[〈
(d+ x̂)2

〉
− 〈d+ x̂〉2

]
+ 〈X̂2〉 . (S.33)

This “corrected” fluctuation-dissipation theorem now agrees with the expressions (S.25) and (S.26).

Additionally, if for high temperatures we expand the expression we found for 〈X̂2〉 then

〈(d+ x̂)2〉 − 〈(d+ x̂)〉2 ≈ 1

βmω2
+

( Jλ

mω2

)2 (
〈n̂t〉 − 〈n̂t〉2

)
=
χ
(el)
0

βq2
.

The presence of a magnetic field again only affects the occupation number of the triplet state, 〈n̂t〉, from
the expression in (S.16) to the one in (S.21). The second term in (S.25) then varies. The following plot

shows the susceptibility at zero electric field (solid line) as well as the triplet occupation number at a low

temperature (dashed line) in arbitrary units.

0.5 1 1.5

The susceptibility is largest when the triplet occupation number changes, i.e., when H = ±Hc = ±J̃/gµB .

This makes sense since in that case the system is most susceptible to an external influence like an electric

field.
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Statistical Physics.
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HS 2013
Prof. Manfred Sigrist

Exercise 1. Pair correlation functions for fermions at finite temperature

In this exercise we want to study the correlation functions for a system of free independent
fermions at finite temperature, especially in the high temperature limit.

(a) Evaluate the thermal average 〈Ô〉 =
tr

{

e−βH′
Ô
}

tr e−βH′ for Ô = n̂~k and Ô = n̂~kn̂~q at T = 0 and

at T > 0, where H ′ = H − µN̂ and β = 1

kBT
.

Solution. The T = 0 is the ground state expectation value 〈Φ0 |Ô |Φ0〉.

n̂~k|Φ0〉 = Θ(kF − k)|Φ0〉 =: n~k|Φ0〉 (S.1)

n̂~kn̂~q|Φ0〉 = n̂~kn~q|Φ0〉 = n~kn~q|Φ0〉 , (S.2)

where k = |~k|, ~kF is the Fermi wave vector and Θ(x) is Heaviside step function:

Θ(x) =







0 if x < 0

1 if x ≥ 0

. (S.3)

Therefore 〈Φ0 |n̂~k |Φ0〉 = n~k and 〈Φ0 |n̂~kn̂~q |Φ0〉 = n~kn~q = 〈Φ0 |n̂~k |Φ0〉〈Φ0 |n̂~q |Φ0〉 .

For a non-interacting model

〈n̂~k〉 =

{

∏

~p 6=~k

∑

ñ~p=0,1

(
ze−βǫ~p

)ñ~p

}{

∑

ñ~k
=0,1

ñ~k

(
ze−βǫ~k

)ñ~k

}

∏

~p

∑

ñ~p=0,1

(
ze−βǫ~p

)ñ~p
=

∑

ñ~k
=0,1

ñ~k

(
ze−βǫ~k

)ñ~k

∑

ñ~k
=0,1

(
ze−βǫ~k

)ñ~k

=
0 + ze−βǫ~k

1 + ze−βǫ~k
=

1

1 + z−1e−βǫ~k
=

1

1 + e−β(ǫ~k−µ)
=: n~k , (S.4)

where z = eβµ .

〈n̂~kn̂~q〉 =

{

∏

~p 6=(~k,~q)

∑

ñ~p=0,1

(
ze−βǫ~p

)ñ~p

}{

∑

ñ~k
=0,1

ñ~k

(
ze−βǫ~k

)ñ~k

}{

∑

ñ~q=0,1

ñ~q

(
ze−βǫ~q

)ñ~q

}

∏

~p

∑

ñ~p=0,1

(
ze−βǫ~p

)ñ~p

=

∑

ñ~k
=0,1

ñ~k

(
ze−βǫ~k

)ñ~k

∑

ñ~k
=0,1

(
ze−βǫ~k

)ñ~k

∑

ñ~q=0,1

ñ~q

(
ze−βǫ~q

)ñ~q

∑

ñ~q=0,1

(
ze−βǫ~q

)ñ~q
= 〈n̂~k〉〈n̂~q〉 = n~kn~q . (S.5)

General remark: To obtain the correlation function at finite temperature (Section 3.6.1 from the Lecture Notes)
we have to use the Fermi-Dirac distribution instead of the step function. Formally, the results written in terms
of n~k remain the same.

(b) Show that the one-particle correlation function is

n

2
gs(~R) =

∫∫∫

d3k

(2π)3
n~ke

−i~k·~R , (1)

where n~k is the Fermi-Dirac distribution.

1



Solution. By definition:

n

2
gs(~R) = 〈Ψ̂†

s(~r + ~R)Ψ̂†
s(~r)〉 =

1

Ω

∑

~k,~k′

e
−i~k·(~r+~R)+~k′·~r〈â†

~ks
â~k′s〉 =

1

Ω

∑

~k

n~ke
−i~k·~R =

∫∫∫
d3k

(2π)3
n~ke

−i~k·~R
, (S.6)

where we used that n~ks = n~k.

(c) Show that in the high temperature limit

gs(~R) ≈ e
−π~R2

λ2 , (2)

where λ =
√

h2

2πmkBT
is the thermal wavelength. Compare this result with the one you

know for T = 0.

Hint.
∫

∞

−∞
e−ax

2+bx =
√

π

a
e

b2

4a ∀a ∈ R+, b ∈ C .

Solution. Using the thermal wavelength we have βǫ~k = 1
4π

h2~k2

2πmkBT
= λ2~k2

4π
.

In the high temperature limit we could approximate n~k ≈ e−β(ǫ~k−µ). Also,

n

2
≈
∫∫∫

d3k

(2π)3
e
−β(ǫ~k−µ) =

eβµ

(2π)3

∫∫∫

d
3
k e

−λ2~k2

4π =
eβµ

(2π)3

(
2π

λ

)3

=
eβµ

λ3
. (S.7)

Replacing the chemical potential we obtain n~k ≈ nλ3

2
e−

λ2~k2

4π .

The correlation functions becomes:

n

2
gs(~R) ≈

∫∫∫
d3k

(2π)3
e
−β(ǫ~k−µ)

e
−i~k·~R =

nλ3

2

1

(2π)3

(∫ ∞

−∞
dkxe

−λ2k2
x

4π
−ikxRx

)3

=
nλ3

2

1

(2π)3

(
2π

λ

)3

e
−π~R2

λ2 =
n

2
e
−π~R2

λ2 . (S.8)

Therefore gs(~R) ≈ e
−π~R2

λ2 . The oscillations from the T = 0 case are no longer present.

(d) Show that in the high temperature limit

g(~R) =
g↑↑(~R) + g↑↓(~R)

2
≈ 1−

e
− 2π~R2

λ2

2
. (3)

Compare this result with the one you know for bosons.

Solution. The pair correlation function for fermions with different spins is gss′(~R) = 1 while for equal-spin is
gss(~R) = 1− gs(~R)2 . Therefore

g(~R) ≈ 1 + 1− e
− 2π~R2

λ2

2
= 1− e

− 2π~R2

λ2

2
. (S.9)

For bosons the result is 1 + e
− 2π~R2

λ2 . Therefore up to the prefactor 1
2
the two pair correlation functions are

symmetric around g(R → ∞) = 1. At R → 0, fermions avoid each other g(R → 0) = 1
2
( 1
2
comes from fermions

with different spins) while bosons like to stay together g(R → 0) = 2 .

(e) How does the density depletion change? It is defined as n
∫∫∫

d3r (g(~r)− 1).

2



Solution. The density depletion is just

n

∫∫∫

d
3
r (g(~r)− 1) = −n

2

∫∫∫

d
3
r gs(~r)

2 ≈ −n

2

∫∫∫

d
3
r e

− 2π~r2

λ2 = −n

2

(
λ√
2

)3

= − n

4
√
2
λ
3
, (S.10)

which decreases fast with the temperature ∝ T− 3
2 .
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Exercise 2. Single-particle correlation function for bosons

Consider a homogeneous gas of free independent spin-0 bosons at T > Tc. The single-particle
correlation function is given by

g(~R) =

∫∫∫

d3k

(2π)3
n~ke

−i~k·~R , (4)

where ǫ~k = ~2~k2

2m
and n~k = 1

e
β(ǫ~k

−µ)
−1

(Section 3.7.2 from the Lecture Notes).

(a) Show that in the ~R → 0 limit

g(~R) ≈ n

(

1−
~R2

6
〈~k2〉

)

, (5)

where n is the particle density.

Solution. Here we reused the notation from Section 3.7.2. If we normalize the value of the correlation function
we have do the following change g(~R) → g(~R)

n
.

We have

e
−i~k·~R ≈

~R→0
1 + (−i~k · ~R) +

(−i~k · ~R)2

2!
= 1− i~k · ~R− (~k · ~R)2

2
. (S.11)

In this limit the correlation function becomes

g(~R) ≈
∫∫∫

d3k

(2π)3
n~k

(

1− i~k · ~R− (~k · ~R)2

2

)

= I1 + I2 + I3 , (S.12)

with

I1 =

∫∫∫
d3k

(2π)3
n~k = n (S.13)

I2 =

∫
d3k

(2π)3

(

−i~k · ~R
)

n~k =

∫ ∞

0

dk

(2π)3
(−ikR)nk

∫ π

0

dφ

∫ 1

−1

d(cos θ) cos θ

︸ ︷︷ ︸

1/2−1/2=0

= 0 (S.14)

where we defined R = |~R|, k = |~k| and we used ǫ~k = ~
2~k2

2m
= ~

2k2

2m
= ǫk, n~k = nk, and

I3 =

∫∫∫
d3k

(2π)3
−(~k · ~R)2n~k

2
=

∫ ∞

0

dk

(2π)3
−k2R2nk

2

∫ π

0

dφ

∫ 1

−1

d(cos θ) cos2 θ

︸ ︷︷ ︸

1/3+1/3=2/3

= −R2

6

∫ ∞

0

dk

(2π)3
k
2
nk

∫ π

0

dφ

∫ 1

−1

d(cos θ)

︸ ︷︷ ︸

1+1=2

= −R2

6

∫∫∫
d3k

(2π)3
~k2n~k

∫∫∫
d3k

(2π)3
n~k

∫∫∫
d3k

(2π)3
n~k

= −n
R2

6
〈~k2〉 . (S.15)

Therefore g(~R) ≈ n
(

1− ~R2

6
〈~k2〉

)

.

(b) Study 〈~k2〉 in the low and high temperature limits and derive the correlation function g(~R)

in these limits. Express the result in terms of the thermal wave length λ =
√

h2

2πmkBT
.

Hint.
∫

∞

0
dx x2ne−ax

2

=
√

π

a

1·3···(2n−1)
an2n+1 ∀a ∈ R+, n ∈ N .

Hint. ζ(x)Γ(x) =
∫

∞

0
du u

x−1

eu−1 ∀x > 1 .
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Solution. Using the thermal wavelength we have βǫ~k = 1
4π

h2~k2

2πmkBT
= λ2~k2

4π
. We define also the fugacity z = eβµ .

Variant 1

By symmetry
〈~k2〉 = 〈k2

x + k
2
y + k

2
z〉 = 3〈k2

z〉 . (S.16)

For the high temperature limit we have n~k = 1

e
β(ǫ~k

−µ)−1
≈ e−β(ǫ~k−µ). Therefore

n〈k2
z〉 ≈

∫∫∫
d3k

(2π)3
k
2
ze

−β(ǫ~k−µ) =

∫∫
dkxdky

(2π)3

∫ ∞

−∞
k
2
ze

−λ2

4π
(k2

x+k2
y+k2

z)+βµ

=
1

2

4π

λ2

∫∫
dkxdky

(2π)3

∫ ∞

−∞
e
−λ2

4π
(k2

x+k2
y+k2

z)+βµ =
2π

λ2

∫∫∫
d3k

(2π)3
e
−β(ǫ~k−µ)

=
2π

λ2

∫∫∫
d3k

(2π)3
n~k =

2π

λ2
n , (S.17)

where using the hint we conclude that
∫∞
−∞ dxx2e−ax2

= 1
2a

∫∞
−∞ dxe−ax2

.

Therefore 〈~k2〉 = 6π
λ2 .

Variant 2

〈k2
z〉 =

∫∫∫
d3k

(2π)3
~k2n~k

∫∫∫
d3k

(2π)3
n~k

=
4π
∫∞
0

dkk4nk

4π
∫∞
0

dkk2nk

=
G4

G2
, (S.18)

where Gs =
∫∞
0

dkksnk .

It is convenient to write Gs as

Gs =

∫ ∞

0

dkk
s
nk =

∫ ∞

0

dkk
s 1

z−1e
λ2k2

4π − 1
=

∫ ∞

0

dyy
s

(√
4π

λ

)s+1
1

z−1ey
2 − 1

=

(√
4π

λ

)s+1 ∫ ∞

0

dx

2

x
s+1
2

−1

z−1ex − 1
=:

(√
4π

λ

)s+1

Fs(z) . (S.19)

For high temperature we could expand as

Gs =

(√
4π

λ

)s+1

z

∫ ∞

0

dy
yse−y2

1− ze−y2 =

(√
4π

λ

)s+1

z

∫ ∞

0

dy y
s
e
−y2

(

1 + ze
−y2

+ (ze−y2

)2 + · · ·
)

, (S.20)

where y = k λ√
4π

, x = y2. Replacing this into (S.18) we have:

〈k2
z〉 =

4π

λ2

F4(z)

F2(z)
=

4π

λ2

∫∞
0

dy y4e−y2
(

1 + ze−y2

+ (ze−y2

)2 + · · ·
)

∫∞
0

dy y2e−y2
(
1 + ze−y2 + (ze−y2)2 + · · ·

) =







4π
λ2

Γ(5/2)ζ(5/2)
Γ(3/2)ζ(3/2)

if T → 0

4π
λ2

3
2

if T → ∞

=







4π
λ2

3ζ(5/2)
2ζ(3/2)

if T → 0

6π
λ2 if T → ∞

=







≈ 3π
λ2 if T → 0

6π
λ2 if T → ∞

(S.21)

where we used that z → 1 for T → 0, ζ(5/2)
ζ(3/2)

≈ 0.5 and for high temperature we keep only first term in the
expansion.

However, studying numerically F4 and F2 we could see that they are not so different (see Fig 1) , therefore we
could simply approximate 〈k2

z〉 ≈ 4π
λ2 .

From (a) and the previous result we have

g(~R) ≈ n

(

1−
~R2

6
〈~k2〉

)

≈







n
(

1− ~R2

2
π
λ2

)

if T → 0

n
(

1− ~R2 π
λ2

)

if T → ∞

n
(

1− 2~R2

3
π
λ2

)

if T in-between

. (S.22)
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Figure 1: F4 and F2 as a function of z.

(c) How would you modify the previous result for the correlation function to describe the
Bose-Einstein condensate regime, too?

Solution. The total density n = n0 + nn is the sum of the macroscopic occupation at ~k = 0 and the remaining
one. The previous treatment is valid for the nn part of the density. Therefore we have:

g(~R) = n0 + nn
g(~R)

n
. (S.23)

The normalization stays the same: g(~R) → g(~R)
n

.
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Exercise 1. Exact solution of the Ising chain

In this exercise we will investigate the physics of one of the few exactly solvable interacting

models, the one-dimensional Ising model (Ising chain). Consider a chain of N + 1 Ising-spins
with free ends and nearest neighbor coupling −J (J > 0 for ferromagnetic coupling)

HN+1 = −J

N∑

i=1

σiσi+1, σi = ±1. (1)

In this exercise we will be interested in the thermodynamic limit of this system, i.e. we assume
N to be very large.

(a) Compute the partition function ZN+1 using a recursive procedure.

(b) Find expressions for the free energy and entropy, as well as for the internal energy and
heat capacity. Compare your results to the ideal paramagnet.

(c) Calculate the magnetization density m = 〈σj〉 where the spin σj is far away from the ends.
Which symmetries does the system exhibit? Interpret you result in terms of symmetry
arguments.

(d) Show that the spin correlation function Γij = 〈σiσj〉 − 〈σi〉〈σj〉 decays exponentially with
increasing distance |j − i| on the scale of the so-called correlation length ξ, i.e. Γij ∼
e−|j−i|/ξ. Show that ξ = −[log(tanhβJ)]−1 and interpret your result in the limit T → 0.

(e) Calculate the magnetic susceptibility in zero magnetic field using the fluctuation-dissipation
relation of the form

χ(T )

N
=

1

kBT

N/2∑

j=−N/2

Γ0j , (2)

in the thermodynamic limit, N → ∞. For simplicity we assume N to be even. Note that
χ(T ) is defined to be extensive, such that we obtain the intensive quantity by normalization
with N .

(f) Approximate 1/χ(T ) up to first order in 2βJ in the high-temperature limit (β → 0). Use
this result to calculate the Weiss temperature ΘW, which is defined by 1/χ(ΘW) = 0.

Solution.

(a) We can split off the last spin in the Hamiltonian as follows:

HN+1 = −J

N−1∑

i=1

σiσi+1 − JσNσN+1 (S.1)

= HN − JσNσN+1. (S.2)

Notice that HN now describes an identical system with one less spin, i.e. spin N is now the last on the
chain. The Hamiltonian HN no longer depends on σN+1, and we therefore write the partition function as:

ZN+1 =
∑

{σi=±1}

[

e−βHN
∑

σN+1=±1

eβJσNσN+1

]

(S.3)

=
∑

{σi=±1}

e−βHN

(

2 cosh
(

βJσN

))

(S.4)

1



We can now repeat1 splitting off the last spin σN to obtain

ZN+1 =
∑

{σi=±1}

e−βHN−1

∑

σN=±1

eβJσN−1σN

(

2 cosh
(

βJσN

))

(S.7)

=
(

2 coshβJ
) ∑

{σi=±1}

[

e−βHN−1

(

2 cosh
(

βJσN−1

))
]

, (S.8)

where we have used the fact that cosh(x) is an even function. Continuing this sum, one finds

ZN+1 =
(

2 coshβJ
)N−2 ∑

σ1,σ2=±1

eβJσ1σ2

(

2 cosh(βJσ2)
)

(S.9)

=
(

2 coshβJ
)N−1 ∑

σ1=±1

(

2 cosh(βJσ1)
)

(S.10)

= 2
(

2 coshβJ
)N

(S.11)

The same result can be obtained by mapping the problem to a non-interacting Ising paramagnet. The
quantity Si = σiσi+1 might be viewed as a new pseudo-spin for which the Hamiltonian reads

H = −J
N∑

i=1

Si (S.12)

The partition sum of the system of N pseudo-spins (instead of N + 1 reals spins σ) is

Z = (2 coshβJ)N (S.13)

The additional factor 2 appearing in Eqs. (S.6) and (S.11) comes from the fact that the mapping from from
the spin system to pseudo-spins is not unique but two-fold; inverting all real spins σi → −σi produced the
same state in pseudo-spin space.

(b) The energy, entropy and response functions follow directly from the partition function ZN+1 as follows:

The free energy is given by

F = −kBT ln(ZN+1) = −kBT (N + 1) ln(2)−NkBT ln
[

cosh(βJ)
]

,

from which we can compute the entropy as

S = −

(
∂F

∂T

)

= kB
[

(N + 1) ln(2) +N ln
[

cosh(βJ)
]

−NβJ tanh(βJ)
]

.

Next, the internal energy can be found via

U = −
∂

∂β
ln(ZN+1)

= −N
∂

∂β
ln
[

cosh(βJ)
]

= −NJ tanh(βJ).

Then the heat capacity can be found through computing

C = T
∂S

∂T
= −T

∂2F

∂T 2

1Alternatively, notice that the term σNσN+1 is always equal to ±1, independent of the value of σN . Hence it
will always evaluate to 2 cosh(βJ). This means we get:

ZN+1 =
∑

{σi=±1}

exp(−βHN)

︸ ︷︷ ︸

=ZN

2 coshβJ (S.5)

= Z2(2 coshβJ)
N−1 = 2(2 coshβJ)N . (S.6)

In the last line we used that Z2 =
∑

{σ1,σ2}

exp (βJσ1σ2) = 4 coshβJ .
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or

C =

(
∂U

∂T

)

.

Both evaluate to

C = NkB
(βJ)2

cosh2(βJ)
.

The heat capacity (see figure 1) shows no dependence on the sign of J , and is therefore identical for either
a ferromagnet (J < 0) or an antiferromagnet (J > 0).

2 4 6 8 10
kBT�J

0.1

0.2

0.3

0.4

C�HNkBL

Figure 1: Heat capacity of the Ising chain.

Comparing the results to the ideal paramagnet (see script or exercise set 6), one sees that if we there is
an exact correspondence if we let J = Hm (where H is the external field, and m is the magnetization of
the paramagnet). Based on the mapping of this model to a non-interacting Ising paramagnet mentioned
in part a), this was to be expected. Conversely, one may realize the possibility of this mapping given these
identical results.

(c) The magnetization density can be computed in a similar way:

〈σj〉 =
1

ZN+1

∑

{σi=±1}

∑

σN+1=±1

σj exp
(

βJ
∑

i

σiσi+1

)

=
(2 coshβJ)N+1−j

ZN+1

∑

σ1=±1

. . .
∑

σj=±1

σj exp

(

βJ

j−1∑

k=1

σkσk+1

)

=
(2 coshβJ)N+1−j

ZN+1

∑

σ1=±1

. . .
∑

σj−1=±1

exp

(

βJ

j−2∑

k=1

σkσk+1

)
∑

σj=±1

σje
βJσj−1σj

︸ ︷︷ ︸

σj−1(2 sinh βJ)

=
(2 coshβJ)N+1−j(2 sinhβJ)j−2

ZN+1

∑

σ1=±1

∑

σ2=±1

σ2 exp (βJσ1σ2)

︸ ︷︷ ︸

=0

= 0.

This result can easily be interpreted in terms of symmetry. The Hamiltonian (1) on the exercise sheet is
invariant under time-reversal, i.e. σi 7→ −σi, ∀ i ∈ {1, . . . , N+1}. Therefore, a finite magnetization, which
breaks time-reversal invariance, cannot be found by means of analyzing the partition function (a weighted
sum over all states respecting the symmetries of the system).

One could also have obtained this result by considering only the terms involved with spin σj .

(d) Due to a vanishing magnetization 〈σi〉 = 0, the spin correlation function simplifies to Γij = 〈σiσj〉. We
assume j > i. We will use a trick, namely to assume bond-dependent exchange constants Jk. In the end
of the calculation Jk will be set to J . A generalization of a) leads to

ZN+1 = 2

N∏

k=1

(2 coshβJk), (S.14)
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while, using the property σ2
k = 1, the correlation function reads

〈σiσj〉 =
1

ZN+1

∑

{σk=±1}

(σiσi+1)(σi+1σi+2) . . . (σj−1σj) exp
(∑

l

βJlσlσl+1

)

(S.15)

=
1

ZN+1

1

βj−i

∂j−iZN+1

∂Ji . . . ∂Jj−1

∣
∣
∣
∣
Jk=J

= (tanhβJ)|j−i| = e−|j−i|/ξ (S.16)

where the correlation length is

ξ = −
[
log(tanhβJ)

]−1
> 0.

In the limit T → 0, ξ diverges. This is an universal feature of systems undergoing a continuous phase
transition.

(e) Using the result of d) we find

∞∑

j=−∞

〈σ0σj〉 =

∞∑

j=−∞

(tanhβJ)|j| =
1 + tanhβJ

1− tanhβJ
= exp(2βJ). (S.17)

For the magnetic susceptibility at zero field we therefore find

χ(T ) = N
e2J/kBT

kBT
(S.18)

which in the ferromagnetic case (J > 0) diverges for T → 0 indicating that at low temperatures only an
infinitesimal field is needed to produce saturation magnetization.

-1 0 1 2 3 4 5 6
T�ΘW
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7

N�HkBΧL

Figure 2: Inverse susceptibility (continuous line) with high-temperature extrapolation for the Weiss temperature
(dashed line) for ferromagnetic coupling, J > 0 (blue), and antiferromagnetic coupling, J < 0 (red).

(f) Using the result from part (e), we write

1

χ(T )
=

kBT

N
e−2βJ (S.19)

=
kBT

N

[
1− 2βJ +O

(
(2βJ)2

)]
(S.20)

≈
kB
N

(

T −
2J

kB
︸︷︷︸

=ΘW

)

. (S.21)

The Weiss temperature ΘW = 2J/kB can be found by extrapolating the inverse susceptibility to low
temperatures and finding the intersection with the temperature axis. It provides a possibility to determine
the sign and the magnitude of the coupling J between neighboring spins. Refer to section 4.1.3 in the
lecture notes for further details.

The full solution as well as the linear high-temperature approximation with an extrapolation for the Weiss
temperature are shown in figure 2.
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Statistical Physics.

Solutions Sheet 9.

HS 2013
Prof. Manfred Sigrist

Exercise 1. Ising Model: Variational Approach vs. Mean Field.

Consider an Ising lattice in d dimensions, where each of the N spins takes values si = ±s and
has z nearest neighbors. In the presence of an external magnetic field H, the Hamiltonian is

H = −J
∑

〈si,sj〉

si sj −
∑

siH . (1)

Let us also define the average magnetization of a spin as s m̃ = M/N = s (N+ −N−) /N .

(a) Calculate the configurational entropy of the system (or remember that we already did that
in Exercise Sheet 1). Determine the internal energy by taking the average value of the
Hamiltonian, by making the approximation that each of the spins si independently takes
the value ±1 with probability w± = 1

2 (1± m̃). Write your answers in terms of m̃.

Hint. If si and sj are independent, their expectation factorizes: 〈sisj〉 = 〈si〉〈sj〉.

Solution. We calculated in Exercise Sheet 1 the entropy of the system by counting its possible configu-

rations. In terms of n = N+ −N−, the entropy is given by

S(n) =
1

2
NkB

[

2 ln 2−
(

1 +
n

N

)

ln
(

1 +
n

N

)

−
(

1−
n

N

)

ln
(

1−
n

N

)]

, (S.1)

and with the average magnetization per spin,

S(m̃) =
1

2
NkB [2 ln 2− (1 + m̃) ln (1 + m̃)− (1− m̃) ln (1− m̃)] , (S.2)

Now, each spin is ±s with probability w±, such that

〈si〉 = (−s) · w− + s · w+ = s (w+ − w−) = s m̃ . (S.3)

We thus have for the internal energy,

U = −J
∑

〈i,j〉

〈sisj〉 −H
∑

〈si〉 = −J
∑

〈i,j〉

〈si〉〈sj〉 −H
∑

〈si〉 = −J
Nz

2
s2m̃2 −HNs m̃ , (S.4)

where the number of bonds are calculated as z bonds per particle, N times, and correcting for the double

counting of each bond by dividing by 2.

(b) Determine the free energy of the system using the formula F = U − TS. Which vari-
ational principle determines the magnetization of the system? Derive the corresponding
equation. Compare with (5.21) in the lecture notes, which was obtained with the mean
field approximation.

Solution. The free energy is simply

F (m̃) = U − TS

= −J
Nz

2
s2m̃2 −HNs m̃−

1

2
NkBT [2 ln 2− (1 + m̃) ln (1 + m̃)− (1− m̃) ln (1− m̃)] (S.5)

Two find the magnetization that the system will spontaneously adopt, we have to minimize the free energy.

Differentiation by m̃ gives

0
!
=

∂F

∂m̃
= −JNzs2m̃−HNs−

1

2
NkBT [− (ln(1 + m̃) + 1)− (− ln(1− m̃)− 1)]

= −JNzs2m̃−HNs+
1

2
NkBT ln

1 + m̃

1− m̃
,

1



thus obtaining

Jzs2m̃+Hs =
1

2
kBT ln

1 + m̃

1− m̃
, (S.6)

which can be expressed in terms of the effective magnetic field heff = Jzsm̃+H as

s heff

kBT
=

1

2
ln

1 + m̃

1− m̃
.

We can reorder this equation as

1 + m̃ = exp [2βsheff ] (1− m̃) ,

thus

m̃
(

1 + e2βsheff

)

= e2βsheff − 1 ,

from which we deduce

m̃ = tanh [βsheff ] = tanh

(

Jzs2m̃+Hs

kBT

)

. (S.7)

Equation (S.7) is exactly the same as the one obtained in the mean field approximation, cf. (5.21) in the

lecture notes.

Exercise 2. Ising Model: Infinite-Range Forces and Mean Field.

Consider an Ising model where now all spins interact between each other with the same strength
J = 1/N (long-range forces). The Hamiltonian is given by

H = −
1

2N

∑

i, k

sisk −H
∑

si . (2)

The coupling constant is rescaled by N so that the total energy remains finite; also the factor
one-half compensates the fact that in the sum, each index i and k ranges independently from 1
to N , and thus we counted each bond twice.

In this exercise, we’ll show that the mean-field approach for this model is exact (at least for
N → ∞).

(a) In order to calculate the partition function for this model, we will introduce a little math-
ematical trick. Show that the Boltzmann factor which appears in the partition function
can be written as

e−βH =

√

Nβ

2π

∫ ∞

−∞
dλ exp

(

−
Nβλ2

2
+
∑

i

β (λ+H) si

)

. (3)

This is a particular case of the Gaussian transform method which will be seen in the
lecture.

Hint. You should know the Gaussian integral by heart by now, but just in case:

∫

dx e−ax2

=

√

π

a
.

2



Solution. To show that the Boltzmann term can be written as in Equation (3), one can first complete

the square in the exponent (introducing M =
∑

si),

−
Nβλ2

2
+
∑

i

β (λ+H) si = −
Nβλ2

2
+ βλM + βHM = −

Nβ

2

[

λ2 −
2M

N
λ−

2HM

N

]

= −
Nβ

2

[

(

λ−
M

N

)2

−
M2

N2
−

2HM

N

]

= −
Nβ

2

(

λ−
M

N

)2

+
βM2

2N
+ βHM

= −
Nβ

2

(

λ−
M

N

)2

− βH ,

where we have used that

H = −
M2

2N
−HM .

This allows us to compute the Gaussian integral in (3) as

√

Nβ

2π

∫

dλ exp

(

−
Nβλ2

2
+
∑

i

β (λ+H) si

)

=

√

Nβ

2π

∫

dλ exp

(

−
Nβ

2

(

λ−
M

N

)2
)

exp (−βH) =

√

Nβ

2π

√

2π

Nβ
e−βH = e−βH .

(b) Show that the partition function can be written as

Z =

√

Nβ

2π

∫

dλ e−NβA(λ) , A (λ) =
λ2

2
−

1

β
ln (2 cosh [β(λ+H)]) (4)

Solution. Let’s calculate the partition function:

Z =
∑

configurations

e−βH =
∑

√

Nβ

2π

∫

dλ exp

{

−
Nβλ2

2
+
∑

i

β (λ+H) si

}

=

√

Nβ

2π

∫

dλ e−
Nβλ2

2

∑

eβ
∑

(λ+H)si . (S.8)

We recognize the last sum as the partition function of an Ising paramagnet with noninteracting spins in a

magnetic field λ+H. As a reminder:

∑

{si}

eβ
∑

i(λ+H)si =
∑

{si}

∏

i

eβ(λ+H)si =

(

∑

s=±1

eβ(λ+H)s

)N

= (2 cosh [β (λ+H)])N ,

so that we eventually get from (S.8),

(S.8) =

√

Nβ

2π

∫

dλ e−
Nβλ2

2 (2 cosh [β (λ+H)])N =

√

Nβ

2π

∫

dλ e−NβA(λ) ,

where we now have defined

A (λ) =
λ2

2
−

1

β
ln (2 cosh [β (λ+H)]) .

In order to determine the partition function, we will use the steepest descent method (a.k.a.
Laplace method or saddle point approximation): the integral of the exponential is dominated
by the maximum of the function in the exponential. Technically this is done by expanding the
function in the exponent to second order at its maximum, and neglecting further orders.

3



(c) Determine the equation that λ should satisfy in order for it to be the maximum of the
argument of the exponential.

Show that the partition function can be written (for large N) as

Z ≈ e−Nβf ; f = A (λ0) +
1

2Nβ
lnA′′ (λ0) ≈ A (λ0) , (5)

where f is the free energy per spin and λ0 is the minimum of the function A (λ).

Show that λ0 is precisely the average magnetization of a spin, λ0 = 〈si〉 =: m. Deduce that
your result coincides with the magnetization that you would get via mean field theory.

Hint. The average magnetization per spin can be obtained via the free energy per spin, m = −
∂f

∂H
.

Solution. In order to apply Laplace’s method to the calculation of the partition function (4), we first

need to determine the maximum of the argument of the exponential in the integral. This corresponds to

finding the minimum of the function A (λ). The condition of the minimum is

∂A

∂λ
= 0 . (S.9)

Differentiating the expression of A (λ) given by (4),

A′ (λ) :=
∂A

∂λ
= λ−

{

1

β

1

2 cosh [β (λ+H)]
× 2 sinh [β (λ+H)]× β

}

= λ− tanh [β (λ+H)] .

Thus the minimum condition (S.9) for A (λ) is simply

λ = tanh [β (λ+H)] . (S.10)

We can now apply Laplace’s method to approximate the partition function, by expanding the argument of

the exponential to second order and neglecting further orders. Of course the first order is zero because the

expansion is done at a stationary point. Let λ0 be the minimum, satisfying Eq. (S.10).

Z ≈

√

Nβ

2π

∫

dλ e−NβA(λ0)−
Nβ
2

A′′(λ0)(λ−λ0)
2

=

√

Nβ

2π
e−NβA(λ0)

√

2π

NβA′′ (λ0)
=

e−NβA(λ0)

√

A′′ (λ0)
= e−Nβf ,

where the free energy per spin f = F/N is given by

f = A (λ0)−
1

2Nβ
lnA′′ (λ0) ≈ A (λ0) .

Now the magnetization is given by

m = −
∂f

∂H
= −

∂A

∂H
−

∂A

∂λ

∂λ0

∂H
= −

∂A

∂H
, (S.11)

recalling that λ0 also depends on H, but that ∂A
∂λ

vanishes at its minimum, killing the second term in the

expression above. Differentiating A (λ) in (4) by H,

∂A

∂H
= −

1

β

1

2 cosh [β (λ+H)]
× 2 sinh [β (λ+H)]× β = − tanh [β (λ+H)] ,

which, at λ = λ0, is in virtue of Eq. (S.10) simply

∂A

∂H

∣

∣

∣

∣

λ0

= − tanh [β (λ0 +H)] = −λ0 .

This now means that the magnetization is

m = (S.11) = −
∂A

∂H

∣

∣

∣

∣

λ0

= λ0 . (S.12)

Thus, the magnetization m obeys

m = tanh [β (m+H)] , (S.13)
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which is exactly the condition that mean field theory predicts. Indeed, mean field theory yields Equa-

tion (5.21) in the lecture notes, which for J = 1/N and z = N gives exactly (S.13).

Note: when applying the Laplace method to calculate the partition function, the λ0 must be the global

minimum of the function A (λ). In general, the function will have one or two local minima, and if H 6=

0, one will be lower than the other (see Figure below). If the two are the same, the error done in the

approximation for one of the minima is a factor 2, which is a constant in the free energy.

A plot of A (λ):

Β= 1.5

Β= 2.5

Β= 0.5
H= 0.1

Λ- 2 - 1 1 2

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

The zeros of A (λ) can rather easily be found geometrically as the intersection of the lines y = λ and

y = tanh [β (λ+H)]:

Β= 0.5
Β= 1.5

Β= 2.5

H= 0.1

- 2 - 1 1 2
Λ

- 2

- 1

1

2
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Statistical Physics.

Solutions Sheet 10.

HS 2013
Prof. Manfred Sigrist

Exercise 1. Condensation and crystallization in the lattice gas model.

The lattice gas model is obtained by dividing the volume V into microscopic cells which are
assumed to be small such that they contain at most one gas molecule. The result is a square
lattice in two dimensions and a cubic lattice in three dimensions. We neglect the kinetic energy
of a molecule and assume that only nearest neighbors interact. The total energy is given by

H = −λ
∑

〈i,j〉

ninj (1)

where the sum runs over nearest-neighbor pairs and λ is the nearest-neighbor coupling. There
is at most one particle in each cell (ni = 0 or 1). This model is a simplification of hard-core
potentials, like the Lennard-Jones potential, characterized by an attractive interaction and a
very short-range repulsive interaction that prevents particles from overlapping.

In order to study the case of a repulsive interaction, λ < 0, we divide the lattice into two
alternating sublattices A and B. For square or cubic lattices, we find that all lattice sites A only
have points in B as their nearest neighbors.

Figure 1: Schematic view of the lattice gas model.

(a) First, show the equivalence of the grand canonical ensemble of the lattice gas model with
the canonical ensemble of an Ising model in a magnetic field.

Solution. We consider the grand canonical Hamiltonian

H − µN = −λ
∑

〈i,j〉

ninj − µ
∑

i

ni . (S.1)

By introducing Ising spins si through the relation

ni =
1

2
(1 + si) , si = ±1 , (S.2)

we arrive at an Ising model

H − µN = −J
∑

〈i,j〉

sisj − h
∑

i

si −
(

h−
γ

2
J
)

NL = HI −
(

h−
γ

2
J
)

NL (S.3)

with

J =
λ

4
, h =

λ

4
γ +

µ

2
. (S.4)

Here, γ denotes the coordination number (number of nearest neighbors) and NL is the total number of
lattice sites. The grand partition function Z = Tr [exp[−β(H − µN)]] of the lattice gas is thus related to
the canonical partition function ZI = Tr [exp(−βHI)] of the Ising model through

ZG = ZI e
β(λ

8
γ+µ

2 )NL (S.5)

with the relations (S.4) for the exchange coupling J and the magnetic field h.

1



(b) Introduce two mean-field parameters mA and mB and adapt the mean-field solution of the
Ising model discussed in Sec. 5.2 of the lecture notes for these two parameters. What are
the self-consistency conditions for mA and mB?

Solution. The Hamiltonian of the Ising model is

HI = −J
∑

〈i,j〉

sisj − h
∑

i

si . (S.6)

We introduce the mean-field parameters mA and mB, which are defined as

mA = 〈si〉i∈A , mB = 〈sj〉j∈B . (S.7)

Now we can write for i ∈ A
si = mA + δi := mA + (si −mA) , (S.8)

where we assume δi to be small. The case j ∈ B is analog.

Now we can expand the Hamiltonian

HI = −J
∑

〈i,j〉

(mA + δi)(mB + δj)− h
∑

i

si

= −J
∑

〈i,j〉

(mAmB +mBδi +mAδj + δiδj)− h
∑

i

si

≈ −J
∑

〈i,j〉

[mAmB +mB(si −mA) +mA(sj −mB)]− h
∑

i

si

=
γN

2
JmAmB − γJ

∑

i∈A

mBsi − γJ
∑

j∈B

mAsj − h
∑

i

si

=
γN

2
JmAmB −

∑

i∈A

(γJmB + h)si −
∑

j∈B

(γJmA + h)sj ,

(S.9)

where we used that nearest neighbors always belong to different sublattices and neglected the product δiδj .
We find that the two sublattices A and B behave as paramagnets in the effective fields

hA
eff = γJmB + h , hB

eff = γJmA + h . (S.10)

The partition function of a paramagnet was already discussed previously, so the partition function of this
mean-field Hamiltonian is

ZI = exp
[

− 1
2
βγNJmAmB

]

·
[

2 cosh
(

βhA
eff

)]N/2

·
[

2 cosh
(

βhB
eff

)]N/2

. (S.11)

This immediately leads to the Helmholtz free energy

FI(β, h,N) =
N

2

(

JγmAmB −
1

β

{

log
[

2 cosh(βhA
eff)

]

+ log
[

2 cosh(βhB
eff)

]}

)

. (S.12)

The self-consistent solutions are given by the local minima of the free energy. The conditions are therefore

∂FI

∂mA
= 0 ⇔ mB = tanh

[

βhA
eff

]

(S.13a)

∂FI

∂mB
= 0 ⇔ mA = tanh

[

βhB
eff

]

. (S.13b)

(c) Use your results from parts (a) and (b) to calculate the grand potential for the lattice gas
and determine the self-consistency relations for the two mean-field parameters ρA = 〈ni〉i∈A
and ρB = 〈ni〉i∈B.
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Solution. We use the mean-field approximation (S.12) derived in part (b) and the relations (S.4) in order
to write the grand potential

Ω(β, µ,NL) = −
1

β
logZG = FI(β, h,NL)−

(

λ

8
γ +

µ

2

)

NL

=
NL

2

[

−

(

λγ

4
+ µ

)

+
λγ

4
(2ρA − 1)(2ρB − 1)

−
1

β

{

log

[

2 cosh

(

β

2
(λγρA + µ)

)]

+ log

[

2 cosh

(

β

2
(λγρB + µ)

)]}]

,

(S.14)

where we used the relation ρ = 1
2
(1 +m). Here, the effective magnetic fields (S.10) are replaced by

hA,B
eff → 1

2
(λγρB,A + µ) . (S.15)

We can now reformulate the self-consistency equations (S.13) for the lattice gas by inserting the rela-
tions (S.15). Using artanhx = 1

2
log[(1 + x)/(1− x)] for x ∈ [−1, 1], we obtain the two relations

µ =
1

β
log

ρA
1− ρA

− λγρB =
1

β
log

ρB
1− ρB

− λγρA , (S.16)

which can also be written in the form

ρA =
1

1 + e−β(λγρB+µ)
, (S.17a)

ρB =
1

1 + e−β(λγρA+µ)
. (S.17b)

By inserting Eq. (S.17b) into Eq. (S.17a), we obtain the single condition

ρA =

[

1 + exp

(

−β

[

γλ

1 + exp (−β(γλρA + µ))
+ µ

])]−1

. (S.18)

In the following we will use the mean-field solution of the lattice gas model in order to discuss
the liquid-gas transition for an attractive interaction λ > 0.

(d) Argue, why in this case the mean-field results can be simplified as the two densities must be
equal, ρA = ρB = ρ. Use your knowledge of the Ising model to define a critical temperature
Tc, below which there are multiple solutions to the self-consistency equations, and discuss
the solutions of ρ for temperatures above or below Tc. Define also the critical chemical
potential µ0 corresponding to h = 0 in the Ising model and use this for a distinction of
cases.

Solution. The two self-consistency equations (S.17) are of the mathematical form

a = φ(b) b = φ(a) , (S.19)

where the function is given by

φ(x) =
1

1 + e−β(λγx+µ)
. (S.20)

It is easy to see that for λ > 0 this function is monotonically increasing, while it is decreasing for λ < 0.

Now if we assume b > a, this implies f(b) > f(a). This immediately leads to a contradiction, as a =
f(b) ≥ f(a) = b > a. The same contradiction follows for b < a. Therefore, for λ > 0 there are only
symmetric solutions ρA = ρB for the self-consistency equations and we can simplify the whole treatment
by just omitting the second mean-field parameter altogether.

From Eq. (S.4) we see that h = 0 corresponds to µ = −λγ/2 =: µ0. For this case we can use the knowledge
about the magnetic transition in the zero-field Ising model. In particular, there is a critical temperature
kBTc = γλ/4 = −µ0/2 below which there exist two degenerate solutions.
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Figure 2: The density ρ as a function of temperature T for different values of the chemical potential µ.

In the lattice gas, these solutions correspond to the liquid and to the gaseous phase and we will denote
them by ρl(T ) and ρg(T ), respectively (see Fig. 2). The third solution of Eq. (S.17) for µ = µ0, namely
ρ = 1/2, is only stable above Tc.

In the general case, there is a unique solution of Eq. (S.17) for T > Tc while for T ≤ Tc there are
three solutions in the neighborhood of µ = µ0 = −2kBTc but only one minimizes Ω (see Figs. 2 and 3).
The solution with dρ/dµ > 0 is stable or metastable while the solution with dρ/dµ < 0 is unstable and
corresponds to a local maximum of the grand potential Ω. Thus, for T < Tc, the density ρ(T, µ) jumps at
µ0 reflecting the first-order liquid-gas transition (see Fig. 3).

(e) Find the equation of state p = p(T, ρ) or p = p(T, v) and discuss the liquid-gas transition
in the p− v diagram. Thereby, v = 1/ρ is the specific volume. Compare with the van der
Waals equation of state:

(

p+
ã

v2

)

(

v − b̃
)

= kBT .

Hint. For the lattice gas, the volume is given by the total number of lattice sites, NL.

Solution. The pressure is given by

p(β, µ) = −
∂

∂NL
Ω(β, µ,NL)

=
µ

2
−

(

λγ

2
(ρ2 − ρ)−

1

β
log

{

2 cosh

[

β

(

λγ

2
ρ+

µ

2

)]})

, (S.21)

where we used Eq. (S.14). For ρ(β, µ) ≤ ρg(β) and ρ(β, µ) ≥ ρl(β) we can simply insert Eq. (S.16) into
the above equation and obtain

p(T, ρ) = −
λγ

2
ρ2 −

1

β
log(1− ρ) (S.22)

or in terms of the specific volume v = 1/ρ

p(T, v) = −
λγ

2

1

v2
− kBT log(1−

1

v
) . (S.23)

But for ρg(β) ≤ ρ(β, µ) ≤ ρl(β) there is coexistence of the liquid and the gas. We have to set µ = µ0 and
ρ = ρg,l(T ) in Eq. (S.21) (this corresponds to the Maxwell construction) leading to a constant pressure!
This is shown in the p− v diagram Fig. 4.
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Figure 3: The density ρ as function of the chemical potential µ for different temperatures. For T < Tc there is a
jump in ρ at µ = µ0 = −2kBTc.

We can rewrite the van der Waals equation of state as follows:

p(T, v) = −
ã

v2
+ kBT

1

v − b̃
,

The elementary volume of the gas (hard core volume) b̃ equals 1 in our model. Comparing this with
Eq. (S.23), we see that the first term is identical (where ã = λγ/2), whereas the second term diverges
either linearly (van der Walls) or logarithmically (our model) with v → 1. This different behavior is
present in the limiting case of high density and can be attributed to the short-range difference of the
potential for the discrete lattice gas model and the continuous van der Waals gas.

(f) Find the phase diagram (T − p diagram). Determine the phase boundary (T, pc(T )) and,
in particular, compute the critical point (Tc, pc(Tc)).

Solution. The critical pressure is given by Eq. (S.22) for µ = µ0 = −2kBTc and ρ = ρg,l(T )

pc(T ) = −2kBTcρ
2
g,l(T )− kBT log(1− ρg,l(T )), (S.24)

as shown in Fig. 5. In particular, for T = Tc we have ρg,l(Tc) = 1/2 and

pc(Tc) =
kBTc

2
(log 4− 1) . (S.25)

Instead of the liquid-gas transition, which we have observed for an attractive interaction λ > 0,
a crystallization transition (sublimation) can be observed for nearest-neighbor repulsion, λ < 0.
In this case, we will find that the two mean-field parameters are different, ρA 6= ρB, below some
critical temperature Tc.

(g) Discuss the solutions above and below the critical temperature for λ < 0. Plot the den-
sities ρA and ρB, as well as the average, (ρA + ρB)/2 for both attractive and repulsive
nearest-neighbor interaction at low temperature, T < Tc. Interpret the result in terms of
compressibility.

5
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Figure 5: p-T phase diagram of the lattice gas model. The two phases coexist when µ = µ0 and T < Tc

(equilibrium line). Above Tc there is only one phase (a single density for a given pressure).

Solution. Below the same critical temperature kBTc = γ|λ|/4 as for an attractive interaction and in a
certain range µ ∈ [µ0 − ∆µ, µ0 + ∆µ] around µ0 = γλ/2, we find three different solutions for the self-
consistency relations (S.17). There are two degenerate asymmetric solutions ρA 6= ρB, which are related
by ρA → ρB, ρB → ρA, and one symmetric solution ρA = ρB.

The range is defined by the condition
φ′(ρ)|φ(ρ)=ρ < −1 (S.26)

where φ(ρ) is the function in the self-consistency equations defined in Eq. (S.20). This can be understood
by looking at the plot of φ(ρA) and φ(ρB) shown in Fig. 6. As φ(ρ) > 0, there have to be two asymmetric
solutions whenever φ′(ρ) < 1 at the symmetric solution. By inserting φ into Eq. (S.26) and solving for µ,
one obtains

∆µ =
γλ

2
θ +

1

β
log

(

1 + θ

1− θ

)

, θ =

√

1 +
4

βγλ
. (S.27)

The asymmetric solutions, which are generally lower in energy, correspond to a crystal structure, where
(at T = 0) one of the sublattices is occupied while the other one is empty.

The densities for attraction and repulsion are shown in Fig. 7. While for a nearest-neighbor attraction the
densities of the sublattices are identical, there is a symmetry-broken phase for nearest-neighbor repulsion.

The compressibility can be written as

κT =
1

ρ2
∂ρ

∂µ
, (S.28)
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at T = 0.5Tc. The thick lines show the average densities, the dashed and dotted lines the densities of the two
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see Sec. 1.5.2 in the lecture notes. The crystallization transition for λ < 0 is of second order (except at
T = 0, where it is of first order). For the average density, which is related to the total particle number,
there exists a plateau around µ0. On this plateau the compressibility is small (κT = 0 for T = 0), see
Fig. 8. This indicates that it costs a lot of energy to add additional particles, as one sublattice is almost
completely filled (so no additional particles fit in) while it is very difficult to add particles to the second
sublattice due to the repulsive interaction.

The liquid-gas transition for λ > 0 is of first order. Therefore, there is a jump in the density (see Fig. 7)
which is related to a diverging compressibility. The compressibility in the liquid phase is strongly reduced
compared to the gaseous phase.

For both transitions, the compressibility vanishes for large chemical potentials, where the lattice is almost
completely filled. In contrast, at low chemical potentials, the lattice is almost empty and the compressibility
is large due to the factor ρ−2 in Eq. (S.28).
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Exercise 1. Magnetic domain wall.

We want to calculate the energy of a magnetic domain wall in the framework of the Ginzburg-
Landau (GL) theory. Assuming translational symmetry in the (y, z)-plane, the GL functional
in zero field reads

F [m,m′] = F0 +

∫

dx

{

A

2
m(x)2 +

B

4
m(x)4 +

κ

2
[m′(x)]2

}

. (1)

(a) Solve the GL equation with boundary conditions

m(x → ±∞) = ±m0, m′(x → ±∞) = 0, (2)

where m0 is the magnetization of the uniform solution.

Solution. The Euler-Lagrange equation of the GL functional is

0 =
δF

δm
=

∂f

∂m
− d

dx

∂f

∂m′
= Am+Bm3 − κm′′. (S.1)

Assuming A < 0 and B > 0 the uniform solution is

m0 :=

√

−A

B
. (S.2)

By introducing rescaled variables s = x/ξ and u(s) = m(sξ)/m0, where

ξ =

√

− κ

A

is the correlation length, we arrive at the equation

u(s)− u(s)3 + u′′(s) = 0. (S.3)

Multiplying the above equation by u′ and integrating from −∞ to s we obtain

u′(s)2 =
1

2

[

1− u(s)2
]2

where we have used u(−∞) = −1 and u′(−∞) = 0. The correct solution for u′ is the positive root,

u′(s) =
1√
2

[

1− u(s)2
]

which can be integrated to give

u(s) = tanh

[

s− s0√
2

]

=⇒ m(x) = m0 tanh

[

x− x0√
2ξ

]

. (S.4)

Without loss of generality we set x0 = s0ξ = 0 in the following.

(b) First, find the energy of the uniformly polarized solution (no domain walls). Next, compute
the energy of the solution with a domain wall compared to the uniform solution. Use the
coefficients A, B and κ according to the expansion of the mean-field free energy of the
Ising model (see Eqs. (5.78) and (5.83)). Finally, find the energy of a sharp step in the
magnetization and compare it to the above results.

1



Solution. The free energy density of the uniformly polarized solution is fu = f0 +Am2
0/4.

The energy of the domain wall as compared to the uniform solution is therefore

∆F =

∫

dx

{

A

2
m(x)2 +

B

4
m(x)4 +

κ

2
[m′(x)]2 − A

4
m2

0

}

=

∫

dx

{

m(x)

2

[

Am(x) +
B

2
m(x)3 − κm′′(x)

]

− A

4
m2

0

}

=

∫

dx

[

−B

4
m(x)4 − A

4
m2

0

]

= −Am2
0

4

∫

dx

[

1− m(x)4

m4
0

]

.

In the second line we have used integration by parts and in the third line we have used the GL equation.

Changing to the integration variable t = x/(
√
2ξ) yields

∆F = −Am2
0

4

√
2ξ

∫

dt
[

1− (tanh t)4
]

, (S.5)

and by using tanh′ x = 1− tanh2 x we find

∆F = −Am2
0

4

√
2ξ

∫

dt
[

1− tanh2 t(1− tanh′ t)
]

= −Am2
0

4

√
2ξ

∫

dt

[

(tanh t)′ +
1

3
(tanh3 t)′

]

= −2Am2
0

3

√
2ξ. (S.6)

Using the expressions of Chapter 5 (see Eqs. (5.78) and (5.83)) for the coefficients A, B and κ (derived for

an Ising model with coarse graining), we find that

∆F ∼ Jm2
0

√

1− T

Tc
→ 0 (T → Tc). (S.7)

In contrast, a sharp step in the magnetization from −m0 to m0 costs an energy

E ∼ Jm2
0 , (S.8)

(see Chap. 5.6), which for T → Tc is less favorable.

1

Note that in the above energy discussions, the actual position of the domain wall (see entropy contribution

in Chap. 5.6) was not taken into account.

Exercise 2. Gaussian Fluctuations in the Ginzburg-Landau Model.

Consider the Ginzburg-Landau model of the d-dimensional Ising model in presence of a magnetic
field H(r), introduced in chapter 5.4 of the lecture notes. Here, we only consider temperatures
above the critical temperature Tc. In order to make the model exactly tractable, we assume

1Notice that (S.4) describes a sharp step in the magnetization if ξ → 0. One might think then that (S.8)

contradicts the expression (S.6), as the latter goes to zero if ξ → 0 while the former does not. However, one should

keep in mind that the continuum model considered here is derived from a discrete model by coarse-graining. In

particular, ξ depends on the lattice spacing a and the reduced temperature τ according to

ξ ∝ a√
τ

.

The correlation length ξ is thus always greater than a and can not be zero. The continuum limit keeps the

information about the discreteness of the original model. A sharp step in the discrete case corresponds to a step

of width a. At zero temperature, when the system is freezed and ξ = a, both expressions (S.8) and (S.7) agree.
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that quartic fluctuations are negligible and ignore them. Therefore, the free energy functional
for a given magnetization m and temperature T in d dimensions is given by

F (T,m,H) =

∫

ddr
{1

2
Am(r)2 −H(r)m(r) +

1

2
κ
[

∇m(r)
]2
}

, (3)

where A = aτ , with τ = (T − Tc)/Tc. For the calculations we assume our system to be a cube
of side length L with periodic boundary conditions on m.

(a) Use the Fourier transform of the magnetization field,

m(r) =
1√
Ld

∑

q

mq e
iq·r , (4)

and compute the energy functional F (T,m) in the transformed coordinates {mq}. Which
values of q are allowed in the sum and which values of q are independent? Note that m(r)
is real and interpret its implication on the mq .

(b*) The calculation of the canonical partition function,

Z(T ) =

∫

Dm e−F (T,m)/kBT , (5)

is rather involved. If you have time to spare, show that Z(T ) is equal to

Z(T ) =
∏

|q|<Λ

√

2π

βXq

exp

{ |Hq|2
2kBT (A+ κq2)

}

, (6)

by using Gaussian integration. Otherwise, proceed directly to point (c) using this result.

Hints. Argue that the finite number of degrees of freedom (finite lattice spacing) of our Ising model
introduces a momentum cutoff Λ, which is crucial to regulate the otherwise ill-defined integrals (cf.
Debye wave vector for phonons).

Rewrite the functional measure Dm according to

Dm =
∏

q

dmq dm−q . (7)

Why do we use dmq dm−q ?

You can also use the fact the measure Dm in Fourier space can be expressed as

Dm = dm0 ·
∏

q∈A+

√
2d(m′

q
)
√
2d(m′′

q
), with mq = m′

q
+ im′′

q
, (8)

where A+ is a choice of half the set of allowed momenta q 6= 0, such that q ∈ A+ ⇔ −q /∈ A+.

(c) Determine the free energy F (T ) = −kBT logZ(T ).

Compute the specific heat cV in the thermodynamic limit L → ∞ for vanishing external
field (H(r) ≡ 0). Study its behavior for different dimensions d near the critical temperature
where τ = 0. Compare the critical exponent of cV with the mean field result of section 5.4.2
of the lecture notes.

(d) Derive an expression for the magnetic susceptibility, defined as the negative second deriva-
tive of the free energy with respect to the external field H in the limit of vanishing field,
i.e.

χ(T ) = − ∂2F (T )

∂H2

∣

∣

∣

∣

H=0

. (9)

What is the critical exponent of χ ? Compare the result with the mean field result of
section 5.2.2 of the lecture notes, Eq. (5.28).
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Solution. Before we start with the solutions, we would like to stress that the form of the free energy, Eq. (1)

on the exercise sheet, is only valid for temperatures above the critical temperature Tc. It corresponds to the

second order expansion of the Ginzburg-Landau free energy (including quartic terms) in the expectation value of

the magnetization 〈m〉 = 0. This is of course only true in the disordered phase, i.e. T > Tc. A similar expansion

up to second order in m is also possible in the phase with broken symmetry, but in that case the expansion is

performed around the non-vanishing expectation value 〈m〉 6= 0 which minimizes the free energy.

(a) Periodic boundary conditions imply discretized momenta, i.e. q ∈ 2π
L
Zd. As a consequence of the unitarity

of the Fourier transform, we find that the interation over the absolute value of m equals the sum over the

absolute value of its Fourier transform (Parseval-theorem). Hence, we immediately find

F (T,m,H) =
1

2

∑

q

(

A+ κq 2)|mq|2 + FH , (S.9)

where FH represents the coupling of m to the external field. The Fourier transform of H(r) is exactly the

same as for m(r) and, thus, we obtain for the linear contribution the following term:

FH = − 1

Ld

∫

ddr
∑

q1

∑

q2

eiq1·reiq2·rmq1
Hq2

= −
∑

q

mqH−q

= −
∑

q

mqH−q +m−qHq

2
(S.10)

As a measurable value, the magnetization m(r) must be a real number and, hence, we find the condition

mq = m∗
−q . (S.11)

This means that the set of independent coordinates for the magnetization fieldm is given by {Re mq, Im mq}
and m0 (condition (S.11) implies that m0 is a real number), where q lies in a half-space which we call A+.

For A+ any space can be chosen that fulfills the conditions

q ∈ A+ ⇔ −q /∈ A+ for q 6= 0 and 0 /∈ A+ . (S.12)

(b*) By using the definition of the complex measure dz = d(Re z)d(Im z) we can define the functional measure

of the magnetization field D by introducing the variables m′ and m′′ for real and imaginary parts of m,

Dm = dm0 ·
∏

q∈A+

√
2 d(m′

q)
√
2 d(m′′

q) with mq = m′
q + im′′

q , (S.13)

where the factors of
√
2 in front of the real differential m′

q and m′′
q come from the Jacobian transformation

of the differentials, cf. discussion in the framed inset below. Keep in mind that the set of independent

variables is given by the mq with q ∈ A+ together with the real m0. Alternatively, one could formulate

the problem using complex Gaussian integration, but we will consider real variables here.

Now introduce the cutoff Λ and correspondingly interpret the half-space A+ as the half-space of q-vectors

with |q| < Λ, so that Dm becomes a well-defined finite-dimensional integral. The introduction of the

cutoff Λ can be understood similar to the cutoff frequency within Debye theory of phonons and is a direct

consequence of the finite lattice spacing. A finite lattice spacing of (in our case) spins directly implies a

finite density of degrees of freedom, which means that the integral over the density of states must equal

the number of degrees of freedom. This requires the introduction of a cutoff Λ for the product over the

q-vectors. The integrals over the real respectivetly imaginary part of mq run from −∞ to ∞.

Z(T ) =

∫

dm0





∏

q∈A+

∫ √
2 dm′

q

√
2 dm′′

q





× exp







−β

2

∑

|q|<Λ

Xq|mq|2 − (Hqm−q +H−qmq)







(S.14)
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Here, we have defined Xq ≡ X−q = (A + κq2). Now we can use |mq|2 = (m′
q)

2 + (m′′
q)

2 and find for the

partition sum

∫

dm0





∏

q∈A+

∫ √
2 dm′

q

√
2 dm′′

q





× exp







−β

2

∑

|q|<Λ

Xq (m
′
q)

2 +Xq (m
′′
q)

2 −
(

Hq(m
′
−q + im′′

−q) +H−q(m
′
q + im′′

q)
)







. (S.15)

Since the summand is completely invariant with respect to q → −q, we can replace the sum by twice a

sum with restriction to the half-space A+ plus the contribution according to q = 0. Then, we use the

condition (S.11), we obtain





∏

q∈A+

∫ √
2 dm′

q

√
2 dm′′

q





× exp







−β
∑

q∈A+

Xq (m
′
q)

2 +Xq (m
′′
q)

2 −
(

Hq(m
′
−q + im′′

−q) +H−q(m
′
q + im′′

q)
)







×
∫

dm0 e
− β

2 (X0 m2
0−2H0m0)

=

(

∏

q∈A+

∫ √
2 dm′

q e
−β(Xq (m′

q
)2−2(Re Hq)m

′

q)
∫ √

2 dm′′
q e−β(Xq (m′′

q
)2−2(Im Hq)m

′′

q )

)

×
∫

dm0 e
− β

2 (X0 m2
0−2H0m0)

=





∏

q∈A+

∫ √
2 dme−β(Xq m2−2(Re Hq)m)

∫ √
2 dme−β(Xq m2−2(Im Hq)m)





×
∫

dme−
β
2 (X0 m2−2H0m) , (S.16)

where in the last equatlity we did nothing but a relabeling of the real integration variables. We are left

with three one-dimensional Gaussian integrals which we know explicitly how to integrate,

∫ ∞

−∞

dx e−ax2+bx+c =

√

π

a
exp

{

b2

4a
+ c

}

. (S.17)

Therefore, noting that the condition (S.11) also holds in complete analogy to the magnetization for the

Fourier components Hq of the external field H(r), we arrive at





∏

q∈A+

√

2π

βXq

exp

{

β(Re Hq)
2

Xq

}

×
√

2π

βXq

exp

{

β(Im Hq)
2

Xq

}



×
√

2π

βX0
exp

{

β H2
0

2X0

}

=





∏

q∈A+

2π

βXq

exp

{

β |Hq|2
Xq

}



×
√

2π

βX0
exp

{

β H2
0

2X0

}

=
∏

|q|<Λ

√

2π

βXq

exp

{

β |Hq|2
2Xq

}

, (S.18)

where in the last equality we have replaced every term in the product by a product of the square root of the

term and the square root of the term with q replaced by −q due to its invariance under this transformation.

This enabled us then to transform the product over all q ∈ A+ into a product over all q including the

contribution q = 0. Thus, the partition function is given by

Z(T ) =
∏

|q|<Λ

√

2πkBT

A+ κq2
exp

{

|Hq|2
2kBT (A+ κq2)

}

. (S.19)
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Fourier Transformation of the Functional Differential Dm

In this part of the exercise we have introduced a discretized momentum space representation of Dm,

Dm = dm0 ·
∏

q∈A+

√
2 d(m′

q)
√
2 d(m′′

q) with mq = m′
q + im′′

q . (S.13)

Here, we will briefly sketch how to derive the seemingly awkward factors of
√
2 and how in principle such

a transformation is performed explicitly. Note that we will only sketch the whole procedure so there is no

claim made concerning mathematical exactness. For simplicity, we assume that our field m(r) is defined only

on a given set of vectors {ri}, defining a lattice in real space. This assumption is always a good consistency

check for any kind of low energy calculation in statistical physics. The continuum limit is the achieved by

smoothly taking the lattice spacing to zero. Here, we fix the lattice spacing a to one.

Starting with the discretized real space, the functional differential Dm is defined as

Dm =
∏

i

dm(ri) =
∏

i

dmi . (S.20)

The Fourier transformation from real space to momentum space then simply corresponds to a change of

variables from {mi} to the {mql
}, where the ql label the reciprocal lattice. First, as already discussed in

part b) above, the momentum space variables are related via the condition

mql
= m∗

−ql
, (S.11)

which reduces the independent variables in momentum space to the mql
with ql ∈ A+ (for the purpose of

this discussion, we will neglect the ql = 0 contribution, which is real by definition). In the discretized real

space picture, we are in the position to count the number of degrees of freedom in a simple way. In real space

we have exactly Nr independent variables, where Nr is the number of lattice sites. In momentum space we

have by definition of the Fourier transformation no loss of information, an consequently the same number of

independent variables Nr which reduces the number of the independent complex mql
to Nq = Nr/2.

Now in order to explicitly perform the transformation from real space to momentum space we have to calculate

the Jacobian of this transformation. The Fourier transform of mi is defined as

mi = L−d/2
∑

ql

eiqlrimql
. (S.21)

Consequently from Eqs. (S.11) and (S.21), the matrix elements of the Jacobian are given by

∂mi

∂m′
ql

= L−d/2(eiqlri + e−iqlri) =
2

Ld/2
cos(qlri) , (S.22)

∂mi

∂m′′
ql

= iL−d/2(eiqlri − e−iqlri) = − 2

Ld/2
sin(qlri) , (S.23)

for the real and imaginary parts of mql
respectively. Therefore, switching from the real space differentials to

the m′
ql

and m′′
ql

one has to multiply the entire product with the determinant of the Jacobian J,

J =























...
...

...

. . . 2L−d/2 cos(qlri−1) 2L−d/2 cos(qlri) 2L−d/2 cos(qlri+1) . . .

. . . −2L−d/2 sin(qlri−1) −2L−d/2 sin(qlri) −2L−d/2 sin(qlri+1) . . .

. . . 2L−d/2 cos(ql+1ri−1) 2L−d/2 cos(ql+1ri) 2L−d/2 cos(ql+1ri+1) . . .

. . . −2L−d/2 sin(ql+1ri−1) −2L−d/2 sin(ql+1ri) −2L−d/2 sin(ql+1ri+1) . . .
...

...
...























, (S.24)

where l = 1, . . . , Nq and i = 1, . . . , Nr.

The matrix J is a squar matrix of size Nr (note that the number of ql-vectors equals half the number of lattice

sites ri. Due to special form with the trigonometric functions, the columns of J represent an orthogonal basis.
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Hence, the Jacobian determinant is given by the product of the norms of the basis vectors V i, which can be

simply calculated.

‖V i‖2 =

∣

∣

∣

∣

∣

∣

∣

∣

(

. . . , 2L−d/2 cos(qlri),−2L−d/2 sin(qlri), 2L
−d/2 cos(ql+1ri),−2L−d/2 sin(ql+1ri)

)

∣

∣

∣

∣

∣

∣

∣

∣

2

=





Nq
∑

l=1

{

(

2L−d/2 cos(qlri)
)2

+
(

−2L−d/2 sin(qlri)
)2
}





1
2

=





Nq
∑

l=1

4L−d





1
2

=
(

4L−d ×Nq

) 1
2

(S.25)

The number Nq equals half the number Nr which, for a cubic system, can be given in terms of the dimension

d, the system length L and the lattice spacing which we have fixed to one. Then, we find that there are

exactly Ld lattice sites and consequently Nq = Ld/2, which renders the norm of each of the column vectors

V i of J to

‖V i‖2 =
√
2 . (S.26)

The determinant det J is then given by

det J = (‖V i‖2)Nr/2 = 2Nr/2 = 2Nq , (S.27)

and, therefore, every term dm′
ql

dm′′
ql

in the product over all Nq ql-vectors acquires a factor of 2. Thus, we

finally have

Dm = dm0 det J
∏

ql∈A+

dm′
ql
dm′′

ql
= dm0 2

Nq
∏

q∈A+

dm′
ql
dm′′

ql
= dm0

∏

ql∈A+

√
2 dm′

ql

√
2 dm′′

ql
, (S.28)

where we have re-included the zero-wavevector contribution m0.

(c) From (S.19) we get the free energy of the system as

F (T ) = −kBT logZ(T ) = −1

2
kBT

∑

|q|<Λ

[

log(2πkBT )− log(A+ κq 2) +
|Hq|2

kBT (A+ κq2)

]

. (S.29)

First we note that the coefficient A is given by A = a(T − Tc)/Tc. The internal energy for vanishing

external field is then given by

U(T ) = kBT
2 ∂

∂T
logZ(T ) =

kBT
2

2

∑

|q|<Λ

[

1

T
− a/Tc

aτ + κq 2

]

. (S.30)

Therefore the specific heat is given by

cV =
1

Ld

∂U

∂T
=

kBT
2

2Ld

∑

|q|<Λ

[

− 1

T 2
+

(a/Tc)
2

(aτ + κq 2)2

]

+ 2
U(T )

T
= A+B + C ; (S.31)

A = constant ; B ∝
∑

|q|<Λ

(a/Tc)
2

(aτ + κq 2)2
; C ∝ U(T )

T
.

In order to study the critical behavior of cV at the phase transition, not all the terms in Eq. (S.31) are

relevant. The term A gives a constant contribution which we ignore for the present analysis. The term B

becomes in the thermodynamic limit

kBT
2(a/Tc)

2

2(2π)d

∫

|q|<Λ

ddq
1

(aτ + κq 2)2
. (S.32)

The behaviour in the vicinity of the critical temperature τ = 0 is therefore determined by the integral
∫ Λ

0

dq
qd−1

(aτ + κq2)2
. (S.33)
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Using the substitution s 7→
√

κ
aτ

q we find that the specific heat behaves like

τ (d−4)/2

∫ Λ(τ)

0

ds
sd−1

(1 + s2)2
, (S.34)

where Λ(τ) := Λ
√

κ/(aτ) .

If d < 4, the integral above converges and we find

cV ∝ τ (d−4)/2 . (S.35)

If d = 4 the integral diverges logarithmically in τ and we find

cV ∝ log τ . (S.36)

If d > 4 the integral diverges proportionally to τ−(d−4)/2, so that

cV ∝ 1 . (S.37)

Note that the term C is also divergent for d 6 2, but it is less singular than term B (C diverges as τ−1/2

for d = 1 and as log τ for d = 2).

With the results (S.35) to (S.37) we can summarize: The specific heat cV of the d-dimensional Ising

model, derived within the Ginzburg-Landau theory at the mean field level including Gaussian fluctuations

is divergent in d ≤ 4 and at the critical temperature Tc and shows a cusp in for all higher dimensions.

Considering the case of three spacial dimensions (d = 3), we find for the critical exponent of the specific

heat (which in literature is called α) a value of 1/2. Compared to the mean field result of α = 0 , we

conclude that Gaussian fluctuations strongly renormalize the temperature dependence of the specific heat.

(d) We are interested in the response of the system to a homogeneous external magnetic field, meaning that

only the Fourier component with q = 0 survives. Hence, from the form of the free energy, Eq. (S.29), we

can immediately read off the magnetic susceptibility,

χ(T ) =
1

a(T − Tc)/Tc
∝ τ−1 , (S.38)

from which we find that at the phase transition, the susceptibility diverges with the critical exponent of

γ = 1. This susceptibility has the exact same form as the one calculated in the lecture notes within mean

field theory, Eq. (5.28). In other words, Gaussian fluctuations do not change the critical exponent of the

magnetic susceptibility and, thus, do not contain non-trivial information about the magnetic correlations

in the vicinity of the phase transition. The fact that Gaussian fluctuations do not qualitatively change

the susceptibility can be understood by considering the correlation functions as second derivative of the

free energy which is related to the curvature of the free energy around its minimum. In order to gain non-

trivial (beyond mean-field) information about correlation functions, one has to take into account higher

order terms such as the m4 term which we neglected in this exercise (cf. Self-consistent field approximation,

chapter 5.5 of the lecture notes).
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Statistical Physics.

Solutions Sheet 12.
HS 2013

Prof. Manfred Sigrist

Exercise 1. The Bogolyubov transformation.

We consider a gas of weakly interacting bosonic particles at low temperatures. In this
limit, the corresponding Hamiltonian can be approximated by

H = 1

2
UΩn2

0
−µΩn0+

1

2

∑

k 6=0

{

(ǫk − µ+ 2Un0)
(

â
†
k
â
k
+ â

†
−k

â−k

)

+ Un0

(

â
†
k
â
†
−k

+ â
k
â−k

)}

,

(1)
where ǫk is the free dispersion,

ǫk =
~
2k2

2m
. (2)

(a) Introduce quasiparticle annihilation and creation operators γ̂
k
and γ̂

†
k
which are

defined by the relation

â
k
= ukγ̂k − vkγ̂

†
−k

and â−k
= ukγ̂−k

− vkγ̂
†
k
. (3)

What is the condition for uk and vk in order to obtain bosonic commutation relations
for these operators?

(b) For real-valued uk and vk you can write the transformation coefficients as

uk =
1

√

1− χ2

k

and vk =
χk

√

1− χ2

k

. (4)

Determine the function χk such that the Hamiltonian is diagonal in the quasiparticle
operators,

H = E0 − µΩn0 +
1

2

∑

k 6=0

Ek

(

γ̂
†
k
γ̂
k
+ γ̂

†
−k

γ̂−k

)

. (5)

(c) Find the quasiparticle dispersion Ek. Fix the chemical potential µ in such a way
that the energy spectrum is linear for k → 0. Approximate the dispersion for small
(k → 0) and large (ǫk ≫ Un0) momenta and calculate the sound velocity for k → 0.

Solution.

(a) We can reverse the problem and start from bosonic commutation relations for the quasiparticles,

[γ̂
k
, γ̂

†
k′ ] = δk,k′ and [γ̂

k
, γ̂

k′ ] = [γ̂†
k
, γ̂

†
k′ ] = 0 . (S.1)

We can use these to calculate the commutation relations for the original operators using the
relation (3):

[â
k
, â

†
k
] =

[

ukγ̂k − vkγ̂
†
−k

, u∗
k
γ̂
†
k
− v∗

k
γ̂−k

]

= |uk|2
[

γ̂
k
, γ̂

†
k

]

︸ ︷︷ ︸

=1

+ |vk|2
[

γ̂
†
−k

, γ̂−k

]

︸ ︷︷ ︸

=−1

−ukv
∗
k

[
γ̂
k
, γ̂−k

]

︸ ︷︷ ︸

=0

−u∗
k
vk

[

γ̂
†
−k

, γ̂
†
k

]

︸ ︷︷ ︸

=0

= |uk|2 − |vk|2 .

(S.2)
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As the original particles are bosons, we obtain the condition

|uk|2 − |vk|2 = 1 . (S.3)

It can be easily checked that all other commutation relations for â
k
and â

†
k
are fulfilled.

(b) We write the Hamiltonian (1) as

H = 1

2
UΩn2

0
− µΩn0 +

1

2

∑

k 6=0

hk (S.4)

and insert the definitions (3) to obtain

hk = (ǫk − µ+ 2Un0)
[(

u∗
k
γ̂
†
k
− v∗

k
γ̂−k

)(

ukγ̂k − vkγ̂
†
−k

)

+
(

u∗
k
γ̂
†
−k

− v∗
k
γ̂
k

)(

ukγ̂−k
− vkγ̂

†
k

)]

+ Un0

[(

u∗
k
γ̂
†
k
− v∗

k
γ̂−k

)(

u∗
k
γ̂
†
−k

− v∗
k
γ̂
k

)

+
(

ukγ̂k − vkγ̂
†
−k

)(

ukγ̂−k
− vkγ̂

†
k

)]

.

(S.5)

Using the commutation relations, in particular γ̂
k
γ̂
†
k
= 1 + γ̂

†
k
γ̂
k
, and collecting terms, we obtain

hk =
(

γ̂
†
k
γ̂
k
+ γ̂

†
−k

γ̂−k
+ 1

) [
(ǫk − µ+ 2Un0)

(
|uk|2 + |vk|2

)
− Un0 (u

∗
k
v∗
k
+ ukvk)

]

︸ ︷︷ ︸

=Ek

+
(

γ̂
†
k
γ̂
†
−k

) [

−2u∗
k
vk (ǫk − µ+ 2Un0) + Un0

(

u∗
k

2 + vk
2

)]

+
(
γ̂
k
γ̂−k

) [

−2ukv
∗
k
(ǫk − µ+ 2Un0) + Un0

(

uk
2 + v∗

k

2

)]

.

(S.6)

In order for this Hamiltonian to be diagonal, the condition

0 = −2u∗
k
vk (ǫk − µ+ 2Un0) +

(

u∗
k

2 + vk
2

)

Un0 (S.7)

must be fulfilled. Here we insert the relations (4), which leads to

0 = − 2χk

1− χ2

k

(ǫk − µ+ 2Un0) +
1 + χ2

k

1− χ2

k

Un0 . (S.8)

The result of this quadratic equation is given by

χk =
(ǫk − µ+ 2Un0)−

√

(ǫk − µ+ 2Un0)2 − (Un0)2

Un0

= 2 +
ǫk − µ

Un0

−

√
(

2 +
ǫk − µ

Un0

)2

− 1 .

(S.9)

Here we can just choose the “−” sign, as the “+” would just correspond to exchanging uk ↔ vk.

(c) In order to determine the dispersion Ek, we define

A := ǫk − µ+ 2Un0 , B := Un0 , and Y =
A

B
. (S.10)

Using this definitions, we obtain

χk = Y −
√

Y 2 − 1 , (S.11a)

χ2

k
− 1 = Y 2 − 2Y

√

Y 2 − 1 + Y 2 − 2

= 2(Y 2 − 1)− 2Y
√

Y 2 − 1

= 2
√

Y 2 − 1
(√

Y 2 − 1− Y
)

.

(S.11b)
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Also, the Eq. (S.8) can be written as

1 + χ2

k

1− χ2

k

= Y
2χk

1− χ2

k

. (S.12)

Now we can insert these results into Eq. (S.6) in order to calculate the dispersion relation

Ek

B
= Y

1 + χ2

k

1− χ2

k

− 2χk

1− χ2

k

= (Y 2 − 1)
2χk

1− χ2

k

=
2(Y 2 − 1)

(
Y −

√
Y 2 − 1

)

2
√
Y 2 − 1

(
Y −

√
Y 2 − 1

)

=
√

Y 2 + 1 ,

(S.13)

⇒ Ek =
√

A2 −B2 =
√

ǫ2
k
+ ǫk(4Un0 − 2µ) + (µ2 − 4µUn0 + 3U2n2

0
) . (S.14)

The occupation of the different quasiparticle states follows the Bose-Einstein distribution

nk =
1

eβEk − 1
. (S.15)

If the energy of the state k = 0 is finite, the occupation will converge to 0 as T → 0. So in order
to have a fixed finite particle number at arbitrarily low temperatures, we need to have Ek=0 = 0,
which leads to a linear dispersion. The condition for this is a vanishing constant term in the
square-root. This fixes the chemical potential to

µ ∈ {Un0, 3Un0} . (S.16)

For µ > Un0 the discriminant becomes negative at either small or large momenta, such that we
have to choose µ = Un0. In this case we obtain the dispersion

Ek =
√

ǫ2
k
+ 2Un0ǫk . (S.17)

For k → 0, we can neglect the quadratic term and approximate the dispersion relation by

Ek ≈
√

2Un0ǫk = ~k

√

Un0

m
. (S.18)

The sound velocity is defined as

cs =
∂Ek

∂(~k)
=

√

Un0

m
. (S.19)

For large momenta we can write

Ek = ǫk

√

1 +
2Un0

ǫk
≈ ǫk

(

1 +
Un0

ǫk

)

= ǫk + Un0 . (S.20)
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Exercise 2. Temperature dependence of the superfluid fraction.

In the lecture we calculated the number of condensed (superfluid) particles at zero tem-
perature [Eq. (6.31)]. In this exercise we want to determine the temperature dependence
of this fraction in the limit T → 0.

(a) Calculate the expectation value of the density of particles with momentum k,

nk :=
1

Ω

〈

â
†
k
â
k

〉

. (6)

Hint. Use the fact that the Bogolyubov quasiparticles defined in Eq. (3) follow a Bose-

Einstein distribution.

(b) Approximate the temperature dependence of this density,

δnk(T ) := nk(T )− nk(T = 0) , (7)

in the limit T → 0.

(c) Calculate the temperature dependence of the density of condensed particles,

δn0 = −
∑

k

δnk , (8)

in the same limit. What happens in a two-dimensional system?

Hint. Keep only the terms of lowest order in T .

(d) Calculate the expectation value
〈

â
†
k
â
†
−k

〉

. What is the physical interpretation of

this quantity?

Solution.

(a) The Bose-Einstein distribution for the Bogolyubov quasiparticles reads

〈

γ̂
†
k
γ̂
k

〉

=
1

eβEk − 1
. (S.21)

This allows us to easily calculate the particle number

Ωnk =
〈(

ukγ̂
†
k
− vkγ̂−k

)(

ukγ̂k − vkγ̂
†
−k

)〉

= u2

k

〈

γ̂
†
k
γ̂
k

〉

+ v2
k

〈

γ̂−k
γ̂
†
−k

〉

− ukvk

(〈
γ̂
k
γ̂−k

〉
+
〈

γ̂
†
−k

γ̂
†
k

〉)

= u2

k

〈

γ̂
†
k
γ̂
k

〉

+ v2
k

〈

γ̂
†
−k

γ̂−k
+ 1

〉

=
(
u2

k
+ v2

k

) 1

eβEk − 1
+ v2

k

=
1 + χ2

k

1− χ2

k

1

eβEk − 1
+

χ2

k

1− χ2

k

.

(S.22)
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(b) At T = 0 the first term vanishes as β → ∞ and Ek > 0, while the second term is independent
from temperature. Therefore the density difference is given by

Ω δnk =
1 + χ2

k

1− χ2

k

1

eβEk − 1
. (S.23)

In the limit T → 0 we find β → ∞ such that the exponential eβEk is strongly peaked around
k = 0. Therefore we can approximate χk for k → 0. There we obtain

χk = 1 +
~
2k2

2mUn0

−

√
(

1 +
~2k2

2mUn0

)2

− 1

= 1 +
~
2k2

2mUn0

−

√

~2k2

mUn0

+

(
~2k2

2mUn0

)2

≈ 1− ~k√
mUn0

.

(S.24)

This leads to an approximation of the temperature-independent part of δnk:

1 + χ2

k

1− χ2

k

≈
1 + 1− 2~k√

mUn0

+ ~
2k2

Un0m

1− 1 + 2~k√
mUn0

− ~2k2

Un0m

≈
2− 2~k√

mUn0

2~k√
mUn0

=

√
mUn0

~k
− 1

(S.25)

For finite k, where βEk & 1, we can approximate the Bose-Einstein distribution by the Boltzmann
distribution

1

eβEk − 1
≈ e−βEk , (S.26)

where we use the linear approximation for the energy,

Ek ≈
√

Un0

m
~k =: ~kcs . (S.27)

Therefore, we obtain the approximation

Ω δnk ≈
(mcs

~k
− 1

)

e−β~kcs . (S.28)

(c) In three dimensions, the density of condensed particles is given by

δn0 = −
∑

k

δnk = −
∫

d3k

(2π)3
δnk . (S.29)

Here, we insert the approximation (S.28) and obtain

Ω δn0 ≈ −
∫

d3k

(2π)3

(mcs

~k
− 1

)

e−β~kcs

= − 1

2π2

∫

dk
(mcs

~
k − k2

)

e−β~kcs

= − 1

2π2

(
mcs

~(β~cs)2
− 2

(β~cs)3

)

T→0≈ − mk2
B

2π2~3cs
T 2 .

(S.30)

In two dimensions, a similar calculation would lead to a linear temperature-dependence,

δn0 ∝ T . (S.31)
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However, in this calculation we underestimated the contributions for very small k: For βEk . 1
we can approximate the Bose-Einstein distribution by

1

eβEk − 1
≈ 1

βEk

≈ 1

cs~k
. (S.32)

Due to the factor of k in the three-dimensional case, this contribution can be neglected. However,
in two dimensions, the integral for δn0 diverges,

Ω δn0 ≈
∫

d2k

(2π)2
mcs

~k

1

cs~k
=

m

2π~2

∫
dk

k
−→ ∞ , (S.33)

such that there exists no superfluid condensate at finite temperature.

(d) We can perform a similar calculation as in Eq. (S.22):

〈

â
†
k
â
†
−k

〉

=
〈(

ukγ̂
†
k
− vkγ̂−k

)(

ukγ̂
†
−k

− vkγ̂k

)〉

= −ukvk

(〈

γ̂
†
k
γ̂
k

〉

+
〈

γ̂−k
γ̂
†
−k

〉)

+ u2

k

〈

γ̂
†
k
γ̂
†
−k

〉

+ v2
k

〈
γ̂
k
γ̂−k

〉

= −ukvk

(
2

eβEk − 1
+ 1

)

= − χk

1− χ2

k

eβEk + 1

eβEk − 1

= − χk

1− χ2

k

[
tanh

(
1

2
βEk

)]−1
.

(S.34)

This quantity can be physically understood as the rate at which particles are exchanged with the
condensate.
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