Mécanique Quantique I, Corrigé 1

 $Assistants: joseph.saliba@epfl.ch \ \& \ pierre.lugan@epfl.ch$

Exercice 1 : Diagonalisation

Les valeurs propres de M sont obtenues en résolvant l'équation :

$$det(M - \lambda \mathbb{1}) = 0 \implies (1 - \lambda)^2 - 2i = 0$$

$$\implies \lambda_1 = 2 + i \text{ et } \lambda_2 = -i$$

On peut aisément déterminer deux vecteurs propres $\overrightarrow{v}_{1,2}$ correspondant aux valeurs propres $\lambda_{1,2}$ en résolvant :

$$M\overrightarrow{v}_i = \lambda_i \overrightarrow{v}_i$$

 $\overrightarrow{v}_1 = (1, 1-i)^T$ et $\overrightarrow{v}_2 = (1, -1+i)^T$ sont deux vecteurs propres possibles correspondant aux valeurs propres λ_1 et λ_2 respectivement.

Exercice 2 : Commutateurs et matrices de Pauli

1. Par définition du commutateur, nous avons que

$$[A, B] = AB - BA \tag{1}$$

Il est alors trivial de vérifier les identités suivantes :

- [A + B, C] = (A + B)C C(A + B) = AC CA + BC CB = [A, C] + [B, C]
- [AB, C] = ABC CAB = ABC ACB + ACB CAB = A[B, C] + [A, C]B
- $[\lambda A, B] = \lambda AB \lambda BA = \lambda [A, B]$ pour $\lambda \in \mathbb{C}$
- 2. Etant données les matrices de Pauli

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (2)

L'égalité

$$\sigma_i \sigma_i = \mathbb{1}\delta_{ij} + i\epsilon_{ijk}\sigma_k \tag{3}$$

se vérifie aisément. Notez que le premier terme de cette décomposition est symétrique en (ij) alors que le second est antisymétrique dans cette paire d'indices. Sachant que le commutateur de σ_i et σ_j est antisymétrique en (ij) et leur anticommutateur $\{\sigma_i,\sigma_j\}$ est symétrique, il est alors immédiat que :

$$[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$$
 et $\{\sigma_i, \sigma_j\} = \sigma_i\sigma_j + \sigma_j\sigma_i = 2\delta_{ij}$ (4)

3. Notons les valeurs propres de σ_i par λ_1^i et λ_2^i auxquelles sont associés les vecteurs propres v_1^i et v_2^i . En notant que les matrices de Pauli satisfont toutes

$$\sigma_i = \sigma_i^{\dagger} \qquad \det \sigma_i = -1 \qquad \text{Tr } \sigma_i = 0$$
 (5)

on sait que leur valeurs propres sont réelles, et qu'elles satisfont $\lambda_1^i + \lambda_2^i = 0$ et $\lambda_1^i \lambda_2^i = -1$. Les valeurs propres sont donc $\{-1,1\}$: $\lambda_1^i = 1$ et $\lambda_2^i = -1$. Il ne nous reste donc qu'à déterminer les vecteurs propres, on trouve :

$$v_1^1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad v_2^1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad v_1^2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \quad v_2^2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \quad v_1^3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad v_2^3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (6)

où l'on a normalisé les vecteurs propres selon $(v_i^j)^{\dagger}v_i^j=1$.

4. On se propose de calculer la valeur des matrices de Pauli sur leurs vecteurs propres. On utilise la notation $\langle v_i^j | \sigma_k | v_i^j \rangle \equiv (v_i^j)^{\dagger} \sigma_k v_i^j$. Les quantités demandées se trouvent aisément :

$$\langle v_1^3 | \sigma_3 | v_1^3 \rangle = 1 \quad \langle v_2^3 | \sigma_3 | v_2^3 \rangle = -1 \quad \langle v_1^2 | \sigma_3 | v_1^2 \rangle = 0 \quad \langle v_2^2 | \sigma_3 | v_2^2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_1^2 \rangle = 1 \quad \langle v_2^2 | \sigma_2 | v_2^2 \rangle = -1 \quad \langle v_2^2 | \sigma_3 | v_2^2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 | v_2 \rangle = 0 \quad \langle v_1^2 | \sigma_2 |$$

5. L'exponentielle d'une matrice est définie par sa série. Calculons donc $\exp(i\alpha\sigma_i)$:

$$\exp(i\alpha\sigma_{i}) \equiv \sum_{n=0}^{\infty} \frac{(i\alpha\sigma_{i})^{n}}{n!} = \left(\sum_{n \text{ pair}} + \sum_{n \text{ impair}}\right) \frac{(i\alpha\sigma_{i})^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{(i\alpha\sigma_{i})^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(i\alpha\sigma_{i})^{2n+1}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}\alpha^{2n}}{(2n)!} \mathbb{1}_{2} + i\sum_{n=0}^{\infty} \frac{(-1)^{n}\alpha^{2n+1}}{(2n+1)!} \sigma_{i}$$

$$= \cos\alpha \mathbb{1}_{2} + i\sin\alpha\sigma_{i}$$
(8)

où $\mathbb{1}_2$ est la matrice identité et où l'on a utilisé $\sigma_i^{2n}=\mathbb{1}_2$. On trouve alors :

$$\exp(i\alpha\sigma_3) = \begin{pmatrix} \cos\alpha + i\sin\alpha & 0\\ 0 & \cos\alpha - i\sin\alpha \end{pmatrix} = \begin{pmatrix} e^{i\alpha} & 0\\ 0 & e^{-i\alpha} \end{pmatrix}$$

$$\exp(i\alpha\sigma_2) = \begin{pmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{pmatrix}$$
(9)

 $6.\,$ Essayons maintenant d'appliquer ces exponentielles sur des vecteurs. On a :

$$\exp(i\alpha\sigma_3)v_1^3 = e^{i\alpha}v_1^3 \qquad \exp(i\alpha\sigma_2)v_1^2 = e^{i\alpha}v_1^2 \qquad \exp(i\alpha\sigma_3)v_2^3 = e^{-i\alpha}v_2^3 \tag{10}$$

où l'on a simplement utilisé le fait que $\sigma_k v_1^k = v_1^k$ et $\sigma_k v_2^k = -v_2^k$. On constate donc que l'exponentielle d'une matrice appliquée à l'un de ses vecteurs propres n'a d'autre effet que de changer sa phase. Voyons les deux derniers cas :

$$\exp(i\alpha\sigma_3)v_1^2 = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\alpha} \\ ie^{-i\alpha} \end{pmatrix} = \cos\alpha v_1^2 + i\sin\alpha v_2^2$$

$$\exp(i\alpha\sigma_2)v_1^3 = \begin{pmatrix} \cos\alpha \\ -\sin\alpha \end{pmatrix} = \cos\alpha v_1^3 - \sin\alpha v_2^3$$
(11)

Exercice 3: La fonction δ

Commençons par rappeler le théorème de la convergence dominée. Soit $f_n(x)$ une suite de fonctions telle que :

- 1. $\lim_{n\to\infty} f_n(x)$ existe pour presque tout x.
- 2. $\exists g(x)$ telle que $|f_n(x)| < g(x) \ \forall x, n \text{ et } \int dx \, g(x) < \infty$.

Alors on peut démontrer que l'intégrale et la limite commutent :

$$\lim_{n \to \infty} \int dx \, f_n(x) = \int dx \lim_{n \to \infty} f_n(x) \tag{12}$$

Voyons maintenant l'exercice :

1. On suppose $\int f(x) dx = 1$, et $f_{\epsilon}(x) = \frac{1}{\epsilon} f\left(\frac{x}{\epsilon}\right)$ et l'on veut montrer que f_{ϵ} tend vers δ lorsque l'on fait tendre ϵ vers zéro. Pour cela on calcule la convolution de f_{ϵ} avec une fonction test $\phi(x)$ supposée continue et intégrable :

$$\lim_{\epsilon \to 0} \int dx \, \phi(x) f_{\epsilon}(x - x_0) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dx \, \phi(x) f\left(\frac{x - x_0}{\epsilon}\right)$$

$$\stackrel{(1)}{=} \lim_{\epsilon \to 0} \int dy \, \phi(x_0 + \epsilon y) f(y) \stackrel{(2)}{=} \phi(x_0) \int dy f(y) = \phi(x_0)$$

- (1) Changement de variable $x = x_0 + \epsilon y$.
- (2) Le théorème de la convergence dominée s'applique car
- (a) $\lim_{\epsilon \to 0} \phi(x_0 + \epsilon y) = \phi(x_0) \ \forall x_0$ puisque $\phi(x)$ est continue.
- (b) $|\phi(x_0 + \epsilon y)f(y)| \le M|f(y)|$ puisque $\phi(x)$ est continue sur un intervalle compact donc elle atteint son maximum et son minimum.

Par définition, on a donc $f_{\epsilon}(x-x_0) \to \delta(x-x_0), \ \epsilon \to 0.$

2. Soit $f_{\epsilon}(x) = \frac{1}{\epsilon} [\theta(x+\epsilon) - \theta(x)].$

$$\lim_{\epsilon \to 0} \int dx \, \phi(x) f_{\epsilon}(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dx \, \left[\theta(x+\epsilon) - \theta(x) \right] \phi(x)$$

$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\int_{-\infty}^{-\epsilon} \phi(x) \left[\underbrace{\theta(x+\epsilon)}_{0} - \underbrace{\theta(x)}_{0} \right] dx + \int_{-\epsilon}^{0} \phi(x) \left[\underbrace{\theta(x+\epsilon)}_{1} - \underbrace{\theta(x)}_{0} \right] dx \right]$$

$$+ \int_{0}^{\infty} \phi(x) \left[\underbrace{\theta(x+\epsilon)}_{1} - \underbrace{\theta(x)}_{1} \right] dx \right]$$

$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{-\epsilon}^{0} \phi(x) \, dx = \lim_{\epsilon \to 0} \int_{-1}^{0} \phi(\epsilon y) \, dy = \phi(0)$$

La dernière étape se justifie à l'aide du théorème de la moyenne ou du passage à la limite dans l'intégrale. On peut en effet invoquer le théorème de la moyenne pour montrer que $\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{-\epsilon}^{0} \phi(x) \, dx = \phi(0)$. En effet, ce théorème affirme que si f(x) est continue sur [a,b], alors il existe $\bar{x} \in [a,b]$ tel que $\int_{-\epsilon}^{b} f(x) \, dx = (b-a)f(\bar{x})$

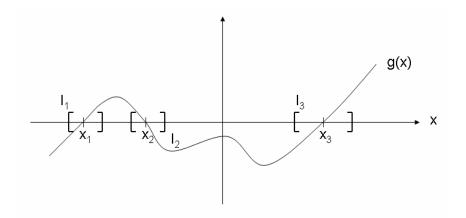
3. (a) Soit $f_{\epsilon}(-x)$ une famille de fonctions telle que $f_{\epsilon}(x) \to \delta(x)$, $\epsilon \to 0$. Vérifions tout d'abord que $\delta(-x) = \delta(x)$:

$$\lim_{\epsilon \to 0} \int dx \, f_{\epsilon}(-x)\phi(x) = \lim_{\epsilon \to 0} \int dy \, f_{\epsilon}(y)\phi(-y) = \phi(0)$$

où l'on a utilisé la définition de $\delta(x)$ dans la dernière étape. Selon la définition, ceci veut dire $f_{\epsilon}(-x) \to \delta(x)$, $\epsilon \to 0$. Comme par hypothèse, $f_{\epsilon}(-x) \to \delta(-x)$, $\epsilon \to 0$, on a bien $\delta(-x) = \delta(x)$. Voyons maintenant que vaut $\delta(ax)$:

$$\lim_{\epsilon \to 0} \int dx \, f_{\epsilon}(ax)\phi(x) = \lim_{y = ax} \int \frac{dy}{|a|} f_{\epsilon}(y)\phi\left(\frac{y}{a}\right) = \frac{\phi(0)}{|a|}$$

Cela signifie $f_{\epsilon}(ax) \to \frac{1}{|a|}\delta(x)$, $\epsilon \to 0$. Comme $f_{\epsilon}(ax) \to \delta(ax)$, $\epsilon \to 0$, on en conclut que $\delta(ax) = \frac{1}{|a|}\delta(x)$.



(b) Soient $\{x_n\}$ les zéros, supposés simples, de g(x). Soient $\{I_n\}$ des intervalles contenant un voisinage de x_n et sur lesquels g(x) est monotone. Soit $f_{\epsilon}(x) \to \delta(x)$, $\epsilon \to 0$. Voyons ce que vaut $\delta(g(x))$:

$$\lim_{\epsilon \to 0} \int dx \, f_{\epsilon}(g(x))\phi(x)$$

$$= \sum_{n} \lim_{\epsilon \to 0} \int_{I_{n}} dx \, f_{\epsilon}(g(x))\phi(x) + \lim_{\epsilon \to 0} \int_{\mathbb{R} - \bigcup I_{n}} dx \, f_{\epsilon} \underbrace{(g(x))}_{\neq 0} \phi(x)$$

$$= 0 \operatorname{car} f_{\epsilon}(y) \to 0 \operatorname{si} y \neq 0$$

$$= \sum_{n} \lim_{\epsilon \to 0} \int_{g(I_{n})} \frac{dy}{|g'(g^{-1}(y))|} f_{\epsilon}(y)\phi(g^{-1}(y))$$

$$= \sum_{n} \frac{\phi(x_{n})}{|g'(x_{n})|}$$

Sur chaque intervalle I_n , g(x) étant inversible, on a effectué le changement de variable $y = g(x) \Rightarrow dy = |g'(x)|dx$. Sur un tel intervalle, $g^{-1}(y)$ est définie, et $g^{-1}(0) = x_n$.

Exercice 4: La transformée de Fourier sur $\mathbb R$

Par définition, la transformée de Fourier de f(x) est donnée par :

$$\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} f(x)$$

1. (a) Voyons tout d'abord la relation entre les transformées de Fourier de f(x) et $f^*(x)$:

$$\widetilde{f^*}(k) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} f^*(x) = \left[\frac{1}{\sqrt{2\pi}} \int dx \, e^{ikx} f(x) \right]^* = \left(\widetilde{f}(-k) \right)^*$$

(b) Voyons ensuite la relation entre les transformées de Fourier entre les deux fonctions décalées f(x) et $f_y(x) \equiv f(x+y)$:

$$\tilde{f}_y(k) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} f(x+y)$$
$$= \frac{1}{\sqrt{2\pi}} \int dz \, e^{-ik(z-y)} f(z) = e^{iky} \tilde{f}(k)$$

(c) Voyons finalement la relation entre les tranformées de Fourier de f(x) et de sa n-ème dérivée

 $f^n(x)$ lorsque cette dernière s'annule quand $x \to \pm \infty$:

$$\widetilde{f^{(n)}}(k) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} f^{(n)}(x)$$

$$= \frac{1}{\sqrt{2\pi}} \left(e^{-ikx} f^{(n-1)}(x) \Big|_{-\infty}^{+\infty} - \int dx (-ik) e^{-ikx} f^{(n-1)}(x) \right)$$

$$= ik \widetilde{f^{(n-1)}}(k)$$

où le terme de bord s'annule par hypothèse. Par récurrence, on obtient donc $\widetilde{f^n}(k)=ik\widetilde{f^{(n-1)}}(k)=(ik)^n\widetilde{f}(k)$

2. On se propose maintenant de déterminer la transformée de Fourier de la convolution h(x) de deux fonctions : $h(x) = \frac{1}{\sqrt{2\pi}} \int dy \, f(x-y)g(y)$

$$\begin{split} \tilde{h}(k) &= \frac{1}{2\pi} \int dx \, e^{-ikx} \int dy \, f(x-y) g(y) \\ &= \frac{1}{x=y+z} \, \frac{1}{2\pi} \int dz \, f(z) \int dy \, e^{-ik(y+z)} g(y) \\ &= \tilde{f}(k) \tilde{g}(k) \end{split}$$

Notez qu'à la deuxième étape le Jacobien de la transformation est 1.

3. — Afin de calculer la tranformée de Fourier d'une Gaussienne, complétons le carré :

$$-ikx - \frac{1}{2}ax^{2} = -\frac{1}{2}a(x + \frac{1}{a}ik)^{2} - \frac{1}{2a}k^{2}$$

$$\frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} e^{-\frac{1}{2}ax^{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{k^{2}}{2a}} \int dx \, e^{-\frac{1}{2}a(x + \frac{1}{a}ik)^{2}}$$

$$= \frac{1}{\sqrt{a}} e^{-\frac{k^{2}}{2a}}$$

où nous avons invoqué le théorème de Cauchy pour dire que

$$\int dx \, e^{-\frac{1}{2}a\left(x+\frac{1}{a}ik\right)^2} = \int dx \, e^{-\frac{1}{2}ax^2} = \sqrt{\frac{2\pi}{a}}$$

En effet, la fonction e^{-az^2} est analytique et tend vers 0 lorsque $|\text{Re }z|\to\infty$.

— La transformée de Fourier de $e^{-a|x|}$ avec a > 0 est donnée par :

$$\frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} e^{-a|x|} = \frac{1}{\sqrt{2\pi}} \left[\int_0^\infty dx \, e^{-(a+ik)x} + \int_0^\infty dx \, e^{-(a-ik)x} \right]$$
$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{a+ik} + \frac{1}{a-ik} \right] = \sqrt{\frac{2}{\pi}} \frac{a}{a^2 + k^2}$$

— A l'aide de ces propriétés, on trouve :

$$h_{\epsilon}(x) = \frac{1}{2\pi} \int dk \, e^{ikx} e^{-\epsilon^2 k^2/2} = \frac{1}{\sqrt{2\pi\epsilon^2}} e^{-x^2/2\epsilon^2} = \frac{1}{\epsilon} f\left(\frac{x}{\epsilon}\right),$$

où $f(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$ satisfait $\int f(y) dy = 1$. Par l'exercice 1, on a $h_{\epsilon}(x) \to \delta(x)$ que l'on écrit alors sous la forme

$$\delta(x) = \frac{1}{2\pi} \int dk \, e^{ikx} \tag{13}$$

Cette forme est importante et donc à retenir!

- 4. Il s'agit dans cet exercice de déterminer la transformée de Fourier inverse ainsi que de démontrer la relation de Parseval :
 - (a) Voyons tout d'abord quelle est la forme de la transformée de Fourier :

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int \, dk \, e^{ikx} \tilde{f}(k) &= \int \, dk \, e^{ikx} \frac{1}{2\pi} \int \, dy \, e^{-iky} f(y) \\ &= \int \, dy \, f(y) \underbrace{\frac{1}{2\pi} \int \, dk \, e^{ik(x-y)}}_{\delta(x-y)} = f(x) \end{split}$$

(b) Montrons alors la relation de Parseval:

$$\int dx f(x)^* g(x) = \frac{1}{2\pi} \int dx \left(\int dk e^{ikx} \tilde{f}(k) \right)^* \left(\int dk' e^{ik'x} \tilde{g}(k') \right)$$

$$= \frac{1}{2\pi} \int \int dk dk' \, \tilde{f}(k)^* \tilde{g}(k') \int dx e^{i(k'-k)x}$$

$$= \int dk \, \tilde{f}(k)^* \tilde{g}(k)$$
(14)

où l'on a à nouveau utilisé la forme intégrale pour $\delta(x)$.

5. Voyons pour finir la transformée de Fourier sur \mathbb{R}^3 . Cette dernière est définie comme :

$$\tilde{f}(\mathbf{k}) = \frac{1}{(2\pi)^{3/2}} \int d^3x \, e^{-i\mathbf{k}\cdot\mathbf{x}} f(\mathbf{x})$$

(a) Voyons comment s'exprime la transformée de Fourier du Laplacien d'une fonction f dont les dérivées s'annulent en $|x| \to \infty$:

$$\Delta f(\mathbf{x}) = \frac{\partial^2 f}{\partial x_1^2}(\mathbf{x}) + \frac{\partial^2 f}{\partial x_2^2}(\mathbf{x}) + \frac{\partial^2 f}{\partial x_3^2}(\mathbf{x})$$

Le résultat se montre simplement en séparant la transformée de Fourier pour chacun de ces trois termes et en applicant le point 1. (c)!

(b) En utilisant les coordonnées sphériques (r, θ, ϕ) , définies à partir du vecteur \mathbf{x} , on a

$$\begin{split} \frac{1}{(2\pi)^3} \int \, d^3k \, e^{i\mathbf{k}\cdot\mathbf{x}} \frac{4\pi}{|k|^2} &= \frac{4\pi}{(2\pi)^3} \int_0^{2\pi} d\phi \, \int_0^{\pi} d\theta \, \sin\theta \, \int_0^{\infty} \, dk \, k^2 e^{ikr\cos\theta} \frac{1}{k^2} \\ &= \frac{1}{\pi} \int_{-1}^1 \, du \, \int_0^{\infty} \, dk \, e^{ikru} \\ &= \frac{1}{\pi} \int_0^{\infty} \, dk \, \frac{e^{ikr} - e^{-ikr}}{ikr} \\ &= \frac{2}{\pi} \int_0^{\infty} \, dk \, \frac{\sin(kr)}{kr} \\ &= \frac{1}{r} \end{split}$$

6. Le produit scalaire entre deux fonctions d'onde est défini par :

$$\langle \phi | \psi \rangle \equiv \int \phi^*(x) \psi(x) dx$$
 (15)

Si l'on définit $\phi_k(x) = \exp\left(\frac{i}{\hbar}kx\right)$, on trouve

$$\langle \phi_k | \psi \rangle = \int \exp(-\frac{i}{\hbar}kx)\psi(x)dx = \sqrt{2\pi}\,\tilde{\psi}(k/\hbar)$$
 (16)

La transformée de Fourier n'est donc rien d'autre que la décomposition en ondes planes de $\psi(x)$. En effet, on verra plus tard que l'on peut écrire $|\psi\rangle = \int \langle \phi_k | \psi \rangle |\phi_k \rangle dk$, qui est la décomposition de ψ sur les ondes planes ϕ_k dont les coefficients sont les transformées de Fourier de ψ .

Pour le reste de l'exercice, nous ne tiendrons plus compte des normalisations et posons $\hbar = 1$.

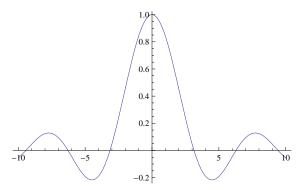
— Voyons donc ce que vaut $\tilde{\phi}_{k_0}(k)$:

$$\tilde{\phi}_{k_0}(k) = \langle \phi_k | \phi_{k_0} \rangle = \int e^{i(k_0 - k)x} dx \propto \delta(k - k_0)$$
(17)

Ce résultat est conforme à l'interprétation précédente, puisque l'on a dit que la transformée de Fourier n'était rien d'autre que la décomposition en ondes planes. Mais ϕ_{k_0} est elle-même une onde plane et ne contient donc que l'onde d'impulsion k_0 !

— Soit $\psi_{[a,b]} = \theta(x-a) - \theta(x-b)$. Cette fonction vaut 1 entre a et b et zéro partout ailleurs. Calculons sa transformée de Fourier dans le cas suivant :

$$\tilde{\psi}_{[-L,L]}(k) = \int_{-L}^{L} e^{-ikx} dx = \frac{2}{k} \sin(kL)$$
(18)



— On considère maintenant un paquet d'onde dont la fonction d'onde est donnée par $\psi_{\Delta,k_0} = \exp(-\frac{1}{2}\frac{x^2}{\Delta^2} + ik_0x)$. En utilisant le début de l'exercice, on calcule sa transformée de Fourier et on trouve :

$$\tilde{\psi}_{\Delta,k_0}(k) = \int dx \, e^{-i(k-k_0)x - \frac{1}{2}\frac{x^2}{\Delta^2}}$$

$$= \int dx \, e^{-\frac{1}{2}\left(\frac{x}{\Delta} + i\Delta(k-k_0)\right)^2} e^{-\frac{1}{2}\Delta^2(k-k_0)^2}$$

$$= \sqrt{2\pi} \, \Delta \, e^{-\frac{1}{2}\Delta^2(k-k_0)^2}$$
(19)

Voici l'esquisse de la transformée de Fourier, avec $k_0 = 1$:

