In the following illustration we render the gradient of some $loss(x,y)$ with respect to $x$ where
⋅ $x∈ℝ^2$ is pixel coordinates on screen (hypothetical current value to be optimized),
⋅ $y∈ℝ^2$ is the mouse's position (target value).

mouse mode
grid size
amplitude
noise amplitude
noise frequence space
noise frequence time
display mode
motion length
motion speed
color (phase=|loss|)
color speed
$MseLoss(x,y) = mean( ⟨x-y|x-y⟩ )$
$log(MseLoss(x,y))$
$CosLoss(x,y) = 1 - CosSim(x,y) = 1 - \frac{⟨x|y⟩}{|x||y|}$
$DotLoss(x,y) = MSE(1, \comment{DotSim(x,y)}{:=⟨x|y⟩/⟨y|y⟩})$
mse
cos
dot
dot-v2
dot-v3
normalize
softmax weight
weighted sum
softmax by gradient amplitude