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1 Introduction

As femtosecond lasers become available to many groups, simulation of propagation
of optical pulses of ultra-short duration and their interaction with media gains new
importance. Modern experiments can barely exist without the support from modeling
and simulation in order to understand and interpret measured data. This is especially
true as nonlinear optics continues to explore ever more extreme regimes [1–3].

As a result of this development, the need to perform sophisticated simulations
widens considerably. However, the development of software for numerical experiments
requires specific knowledge, time and means that too often constitute a barrier be-
tween practitioners of real experiments and their modeling needs.

Fortunately, simulation in ultrafast nonlinear optics has reached a degree of ma-
turity at which it makes sense for the community to have certain standard tools that
can be used in support of state of the art experiments. Alongside researchers mainly
involved in computer simulation, informed non-specialists have been more and more
engaged in numerical modeling [4,5]. In line with these trends, these notes target those
working in the field of ultrafast nonlinear optics, who need to perform numerical simu-
lation with proper understanding of modeling, implementation, and numerical issues.
This is therefore a didactic- and instruction-motivated text which combines a detailed
overview including necessary theoretical background, and a number of opportunities
to hone practical skills through a set of examples presented during the lectures.

The physics governing the effects we aim to understand and model in ultrafast
nonlinear optics belong to several broader fields: classical and quantum optics, elec-
tromagnetism, plasma physics, solid state physics. This rich physics results from laser-
matter interaction in the ultrashort pulse regime, i.e. with sub-picosecond durations
(T ≤ 10−12 s), typically produced by the Chirped Pulse Amplification technique [6].
Nowadays, lasers that produce extremely powerful (1 PW ≡ 1015 W) ultrashort pulses
are developed. Very high light intensities in these pulses induce extreme nonlinear ef-
fects in any condensed material or gaseous medium. In this text, we concentrate on
the regime of intensities up to 1015 W/cm2 obtained e.g. by focusing a pulse with
power in the MW-TW range in a transparent dielectric medium (gas, liquid or solid).
Our rationale is that in this regime, the propagation effects are as significant as the
interaction effects. Laser-matter interaction at these intensities can induce nonlinear
refraction index change or lead to partial ionization of the dielectric medium, how-
ever we do not consider the regime of interaction with fully ionized plasmas. Another
boundary in nonlinear optics is given by the definition of ultrashort, or sub-picosecond
times; they typically correspond to time scales above which the response of matter
to laser excitation starts to involve heat transfer, relaxation processes and hydrody-
namic phenomena. The pulse durations we consider are shorter than the time scales
for these phenomena.

Ultrashort laser pulse filamentation constitutes an example of physical phenomena
in ultrafast nonlinear optics where approaches described in these notes apply particu-
larly well. It denotes a specific regime of nonlinear propagation of intense laser pulses
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I ∼ 1013–1014W/cm2 with narrow beam widths, over distances much larger than a
typical diffraction length. The reader is referred to Ref. [7] for the discovery of this
phenomenon and to Ref. [3] for a detailed review of the rich physics it involves. Here
we describe methods for the modeling of nonlinear laser pulse propagation that apply
in a broader context, and we will use ultrashort laser pulse filamentation as a concrete
context for illustrating a specific medium model plug-in for general pulse-propagation
models.

The notes are organized into two main sections covering (i) the theoretic back-
ground (Sec. 2) and (ii) the description of model implementation (Sec. 3). Section
2 starts from Maxwell’s equations and presents the derivation of several families of
propagation models suitable for nonlinear optics in regimes where Maxwell’s equa-
tions are intractable. It introduces envelope models describing the propagation of laser
pulses with many optical cycles as well as carrier-resolving pulse propagation mod-
els suited for few-cycle pulses. Section 3 deals with translation of theoretical models
into simulation software. It shows how to implement propagation models by means
of numerical algorithms that apply to a broad class of physical problems, namely
those which exhibit a well-defined propagation direction. In particular, we present
methods valid for envelope as well as carrier-resolving pulse propagation models, and
discuss their advantages when the distance a laser pulse travels along the propaga-
tion direction is much larger than the wavelength and the dimensions of the pulse.
Numerical implementation of medium-response models is treated in this section too,
in particular for nonlinearities playing a role in the physics of ultrashort laser pulse
filamentation.

As a concluding word for this introduction, we would like to comment on the
spirit of the presentation to help readers navigate the notes. This text concentrates
on propagation equations that take a canonical form, namely (i) Nonlinear Envelope
Propagation Equations (listed in table 2) solved by combination of finite-difference
and spectral methods, and (ii) Carrier Resolving Propagation Equations (listed in
table 1) solved by purely spectral methods. 1 Our goal is to provide a self-contained
overview of the state of the art in numerical simulation of femtosecond optical pulses,
and, first and foremost, a practical way to embark on practical simulation. That is
why Section 3 was written in the way allowing for a step-by-step building of general
tools for numerical resolution of propagation equations, from the simplest to the most
elaborate models. We show how to decompose a problem at hand, i.e. construction
of a simulation engine into basic building blocks (e.g. linear propagation, nonlinear
source terms, etc). Then we progressively include specifics describing various linear
or nonlinear physical effects. Since partial differential equations of the same type
as the considered propagation equations are encountered in several fields of physics
(e.g., heat equation, advection-diffusion equations, amplitude equations in pattern
formation problems, soliton propagation equations), the techniques taught here are
naturally applicable in many other fields.

These notes are part of the 2013 edition of the Cork School on theory and math-
ematics modeling of ultrashort pulse propagation, and extensively relies on several
texts written for earlier summer schools [8,5,4].

1 Solution methods presented for paraxial Nonlinear Envelope Propagation Equations also
apply to paraxial Carrier Resolving Propagation Equations.
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Table 1. List of angular and chromatic dispersion functions for Carrier-Resolved Propaga-
tion Equations of canonical form (1). k(ω) denotes the chromatic dispersion for the medium
and vg, the pulse group velocity at its central frequency. UPPE: Unidirectional Pulse Prop-
agation Equation. FME: Forward Maxwell Equation. FWE: Forward Wave Equation: FOP:
First-Order Propagation equation. UA: Unidirectional Approximation. MA: Minimal Ap-
proximation. SEWA: Slowly Evolving Wave Approximation. P: Paraxial. ND: No Dispersion

Eq. Ref. Approximation Kz(ω,k⊥) Q(ω,k⊥)

UPPE [9,4] UA
√
k2(ω)− k2

⊥
ω2

c2
√
k2(ω)− k2

⊥

FME [10] SEWA, P k(ω)− k2
⊥

2k(ω)

1

n(ω)

ω

c

FWE [11,12] MA, P k(ω) +
vg
2ω

[(k(ω)− ω

vg
)2 − k2

⊥]
vg
c

ω

c

FOP [13] SEWA, P, ND
ω

c
− ck2

⊥
2ω

ω

c

1.1 List of Propagation Equations discussed in this text

All propagation equations considered in this text can be expressed in Fourier space
in a canonical form for unidirectional equations, which read:

∂Ẽ

∂z
= iKz(ω,k⊥)Ẽ + iQ(ω,k⊥)

P̃

2ε0
, (1)

where z denotes the propagation coordinate (or evolution variable), Ẽ(ω,k⊥, z) de-
notes the spectral components of the (scalar) electric field E(t, r⊥, z) for the laser

pulse, Ẽ(ω,k⊥, z) denotes the spectral components of the nonlinear polarization rep-
resenting the response medium, and Kz(ω,k⊥) and Q(ω,k⊥) represent frequency
and transverse wavenumber dependent functions, the specific form of which depends
on the assumptions and model. Note that Ẽ and P̃ are complex quantities even
though the electric field E(t, r⊥, z) for the laser pulse and the nonlinear polariza-
tion P (t, r⊥, z) are real fields. Propagation equations are furthermore subdivided into
carrier-resolving propagation equations (see table 1) and envelope propagation equa-
tions (see table 2). All propagation equations follow the canonical form but we will
use curly notations for quantities related to envelopes, hence, the canonical equation
for nonlinear envelope equations reads:

∂Ẽ
∂z

= iK(Ω,k⊥)Ẽ + iQ(Ω,k⊥)
P̃

2ε0
. (2)

The numerical methods we present are valid to solve all propagation equations listed in
tables 1 and 2. Independently of the distinction between carrier-resolving and envelope
equations, we distinguished non-paraxial propagation equations, which can be solved
more easily in the spectral domain for space-and-time by the method presented in
section 3.2, from paraxial propagation equations which can also be solved by various
combinations of finite-difference and spectral methods presented in section 3.1. The
method presented for solving non-paraxial equations applies to paraxial equations,
but the opposite is not true: Not all the methods of section 3.1 can solve non-paraxial
carrier resolving propagation equations. Tables 1 and 2 list only scalar propagation
equations but vectorial propagation equations can also be derived in the canonical
form, thus our resolution methods extend to vectorial propagation equations.
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Table 2. List of angular and chromatic dispersion functions for the Envelope Propagation
Equations with canonical form (2). A moving frame co-propagating with the pulse under
examination at velocity vg is assumed and κ(ω) ≡ k0 + (ω − ω0)/vg, where k0 = k(ω0),
ω ≡ ω0 + Ω. FEE: Forward Envelope Equation. NEE: Nonlinear Envelope Equation. LEE:
Linear Envelope Equation. NLS: Nonlinear Schrödinger Equation. PC-NLS: Partially Cor-
rected Nonlinear Schrödinger Equation. P: Paraxial. MA: Minimal Approximation. GFEA:
Generalized Few-cycle Envelope Approximation. SEEA: Slowly Evolving Envelope Approx-
imation. SEWA: Slowly Evolving Wave Approximation. SVEA: Slowly Varying Envelope
Approximation.

Eq. name Ref. Approximation K(Ω,k⊥) Q(Ω,k⊥)

FEE P k(ω)− κ(ω)− k2
⊥

2k(ω)

ω2

c2k(ω)

NEE [3] MA
k2(ω)− κ2(ω)

2κ(ω)
− k2

⊥
2κ(ω)

ω2

c2κ(ω)

NEE [14] GFEA k(ω)− κ(ω)− k2
⊥

2κ(ω)

ω2

c2κ(ω)

LEE [15] SEEA k(ω)− κ(ω)− k2
⊥

2κ(ω)
0

NEE [16] SEWA k(ω)− κ(ω)− ck2
⊥

2n0ω

ω

cn0

NLS [17] SVEA
k′′0Ω

2

2
− k2

⊥
2k0

ω0

cn0

PC-NLS k(ω)− ck2
⊥

2n0ω0
(2− ω

ω0
)

ω

cn0

2 Theory

When viewed through the eyes of a computational physicist, Maxwell’s equations
appear to consist of three coupled components. Divergence equations express initial
conditions or constraints. They are automatically satisfied by any good numerical
method (for example, direct Maxwell solvers will preserve ∇ ·D = 0 as long as this
was the case for the initial condition). Then we have the curl, or propagation equations,
which give us the wave equation. These must be implemented, in some form, by the
simulator. This part will be referred to as propagation models. The third component is
embodied in material constitutive relations, which express properties of light-matter
interactions. The latter part will be referred to as medium response models.

A good implementation in software should treat Maxwell system components as
distinct. In other words, propagation models and medium responses should be sep-
arated as much as possible. In particular, realistic pulse evolution equations must
not build on specific assumptions about the light-matter interactions. Organization
of this theory Section reflects this divide and conquer approach. We will first discuss
two classes of propagation models, namely envelope based and carrier-resolving in a
general frame where all light-matter interactions is described by a nonlinear polar-
ization. Then we deal with nonlinear medium properties that typically play a role in
optical filamentation.
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2.1 Derivation of unidirectional propagation models from the wave equation

2.1.1 From Maxwell’s to the wave equation

Maxwell-Faraday and Maxwell-Ampere equations in a nonmagnetic dielectric medium
read:

∇×E = −∂B
∂t

(3)

∇×B = µ0(J +
∂D

∂t
) (4)

where E and B denote the electric and magnetic fields, D denotes the electric displace-
ment field, J is the current density of free charges. All fields (amplitude and phase)
depend on space variables r ≡ (x, y), time t and the propagation variable z, where
we implicitly assumed existence of a well defined propagation direction. The constant
µ0 is the permeability of free space. The vector wave equation is derived from Eqs
(3,4) and the relation between the electric displacement field, the electric field, and
the polarization which models the response of bound electrons in the medium to the
electric field. The polarization itself usually depends on the electric field via a model
forming a material constitutive relation. Without entering into the details of constitu-
tive relations at this stage, it is useful to decompose the polarization into a linear (or
first order) part P(1) describing the response of the medium for weak electric fields,
and a nonlinear part P that is a nonlinear function of the electric field components
and becomes relevant for stronger fields. The validity limit of this decomposition is
expressed mathematically by the condition P ∼ P(1) and corresponds physically to
the range of electric fields where most electrons are still bound to the nucleus. Laser
intensities up to ∼ 1015 W/cm2 belong to this regime when ionization induced by the
optical field leads to a plasma of smaller density than that of the neutral medium. In
this text, we consider gases or dielectrics that are isotropic and homogeneous media,
for which the components of the first-order polarization are linear functions of the
components of the electric field in the frequency domain. The first order polarization
follows the linear relation:

P̂(1)(r, ω, z) = ε0χ
(1)(ω)Ê(r, ω, z), (5)

where ε0 denotes the permittivity of free space and χ(1)(ω) is the linear susceptibility
of the medium. The expression for the electric displacement reads:

D̂(r, ω, z) = ε0ε(ω)Ê(r, ω, z) + P̂(r, ω, z), (6)

where ε(ω) ≡ 1 +χ(1)(ω) denotes the relative permittivity of the medium [18]. By in-
sertion of Eq. (6) in the Maxwell-Ampere equation, derivation in time of the resulting
equation and by combining it with the curl of Maxwell-Gauss equation, we obtain the
vectorial wave equation governing the evolution of the laser pulse in a transparent
nonlinear medium. In the space-time domain with linear terms gathered on the left
hand side and nonlinear material response on the right hand side, it reads:

∇2E−∇(∇ ·E)− 1

c2
∂2

∂t2

∫ t

−∞
ε(t− t′)E(r, t′, z)dt′ = µ0

(
∂J

∂t
+
∂2P

∂t2

)
(7)

where E, J and P depend on (r, t, z) and we use indifferently the same notation for the
frequency dependent material permittivity ε(ω) ≡ n2(ω), which defines the complex
refraction index n(ω) of the material (including effects of linear absorption), and its
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time representation ε(t). Note that in the general case, the wave equation (7) involves
a time-convolution of the permittivity with the electric field. In the following, it is
useful to work with the space-frequency representation of Eq. (7):

∇2Ê−∇(∇ · Ê) +
ω2n2(ω)

c2
Ê = µ0

(
−iωĴ− ω2P̂

)
(8)

where Ê, Ĵ and P̂ depend on (r, ω, z). Resolution of Eq. (7) or Eq. (8) requires con-
stitutive equations for the medium P(E), J(E) which define a model for the medium
response (free and bound electrons). Examples are given in section 2.5.

Several successive approximations can be made to derive from Eq. (7) a pulse
propagation equation that is suitable for numerical implementation when the pro-
cesses to simulate occur over long propagation distances along a dominant direction
z. We specify these approximations and the associated simplifications of Eq. (7) in
the following sections.

2.1.2 Scalar wave equation

This section details approximations to reduce the vectorial wave equation to the scalar
wave equation.

First, the electric field is assumed to remain linearly polarized along a direction
es transverse to the propagation axis. Thus, E = Ees, J = Jes, P = Pes. There
are actually two assumptions in one: First the electric field and the medium response
(current J, nonlinear polarization P) are transverse, i.e., perpendicular to the prop-
agation direction determined by the wave number k. This standard assumption in
propagation of electromagnetic fields means that the term ∇(∇·E) in Eq. (7) can be
neglected. This remains valid as long as beams are not too strongly focused. When
the beam numerical aperture2 exceeds a few percent, a small longitudinal component
Ez may develop close to the focus and makes this approximation invalid. The reader
interested by this case is refereed to Ref. [47], dealing with vectorial corrections to
scalar wave equations. Second, there is the assumption that the electric field polar-
ization is linear. The latter is not too restrictive as it essentially means that Eq. (7)
can be rewritten in a scalar form by projection along the polarization direction es:

(∂2
z +∇2

⊥)E(r, t, z)− 1

c2
∂2

∂t2

∫ t

−∞
ε(t− t′)E(r, t′, z)dt′ = µ0

(
∂2P

∂t2
+
∂J

∂t

)
(9)

In the case of more than one direction for the electric field polarization, an equation
of the same type as that of Eq. (9) would be obtained for each polarization direction,
with coupling encoded in the material response (see section 2.3.3).

Without loss of generality, we note that the free charge current on the right hand
side of Eq. (9) is formally equivalent to a time derivative of the nonlinear polarization:
in the time domain, J(r, t, z)↔ ∂tP (r, t, z). This has a counterpart in the frequency

domain, Ĵ(r, ω, z)↔ −iωP̂ (r, ω, z) where P̂ and Ĵ are the Fourier transformed non-
linear polarization and current. Therefore, up to the point where we will need to
specify the material nonlinear response and separate explicitly the current from the
nonlinear polarization, we will consider a single term (nonlinear polarization) in prop-
agation models. The current may then be reintroduced in any propagation equation
by changing P̂ into P̂ + iĴ/ω. Equation (9) then becomes:

(∂2
z +∇2

⊥)E(r, t, z)− 1

c2
∂2
t

∫ t

−∞
n2(r, t− t′, z)E(r, t′, z) dt′ = µ0∂

2
t P (r, t, z) (10)

2 the numerical aperture is defined as the ratio between beam diameter and focal distance
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which is formally easier to handle in the Fourier domain:

(∂2
z +∇2

⊥)Ê(r, ω, z) + k2(ω)Ê(r, ω, z) = −µ0ω
2P̂ (r, ω, z) (11)

where k(ω) ≡ n(ω)ω/c.

2.1.3 Forward Maxwell Equation by factorization of the scalar wave equation

A standard way to derive a propagation equation, starting from Eq. (11), is to use
a factorization method proposed by Feit and Fleck [19], which consists in separating
the forward and backward propagators as:

(∂z + ik(ω)) (∂z − ik(ω)) Ê = −∆⊥Ê − µ0ω
2P̂ (r, ω, z) (12)

In the absence of the right hand side, which represents diffraction in the transverse
plane and the nonlinear polarization term, Eq. (12) would admit a superposition of
two solutions:

Ê(ω, z) = Â+(ω) exp[ik(ω)z] + Â−(ω) exp[−ik(ω)z] (13)

which represent waves propagating in the forward or in the backward direction.
Equation (12) is transformed into a unidirectional propagation equation by assum-
ing that the backward propagating component can be neglected with respect to
the forward propagating component: |Â−| � |Â+|, leading to the approximation:
∂z + ik(ω) ' 2ik(ω), and to the Forward Maxwell Equation (FME) [10]:

∂Ê

∂z
= ik(ω)Ê +

i

2k(ω)
∆⊥Ê +

i

2n(ω)

ω

c

P̂

ε0
, (14)

where µ0 was replaced by 1/ε0c
2 so as to make apparent the quantity P/ε0 which has

the same unit as the electric field E. As shown in section 2.1.6, the FME (14) belongs
to the class of carrier resolving paraxial propagation equations, which assumes that
the extent of the angular spectrum of the propagated beams remains significantly
smaller than the pulse central wave number in the propagation direction. This is
usually the case except for beams that are tightly focused by means of microscope
objectives. The FME is therefore correctly models the propagation of beams with
numerical aperture smaller than ∼ 0.1 or conical beams with cone angle smaller than
a few degrees [20].

We will see that in the spectral domain for both space and time, all unidirectional
propagation equations take a canonical form:

∂Ẽ

∂z
= iKz(ω,k⊥)Ẽ + iQ(ω,k⊥)

P̃

2ε0
(15)

where Kz(ω,k⊥) and Q(ω,k⊥) specifically depend on the approximations made to
derive the equation. For the FME (14), we find:

K(FME)
z (ω,k⊥) ≡ k(ω)− k2

⊥
2k(ω)

, Q(FME)(ω,k⊥) ≡ ω

cn(ω)
(16)

which are reported in Table 1 to facilitate comparison with other models.
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2.1.4 From the laboratory to the pulse local frame

In numerical simulations, it is convenient to follow a propagating pulse in its motion
when (i) it travels along large distances, (ii) the main phenomena under investigation
are determined by the interaction with the medium over durations of the same order
of magnitude as the pulse itself, and (iii) this interaction does not lead to a strong
reflected component in the backward direction so as to keep valid the unidirectional
approximation |Â−| � |Â+| assumed in the previous section. The latter condition
does not hold e.g. in a multiple layer mirror but conditions (i)–(iii) are valid for many
experimental situations where propagation effects prevail over interaction with the
medium. Following the pulse in its motion is then usually performed by a change of
reference frame from the laboratory to the pulse local frame (z, t) → (ζ, τ), where τ
denotes the retarded time in the pulse frame:

ζ = z, τ = t− z/vg (17)

∂z = ∂ζ − (1/vg)∂τ , ∂t = ∂τ (18)

Note that vg denotes a constant velocity corresponding to the change of reference
frame. It is possible to chose vg arbitrarily but a convenient choice is vg = 1/k′0, i.e. vg
coincides with the pulse group velocity obtained from the derivative k′0 ≡ (∂k/∂ω)|ω0

of the dispersion relation in the medium k = k(ω) at the central frequency of the
pulse ω0.

The spectral counterparts of the first equation of Eqs. (18), i.e. ∂z = ∂ζ+i(ω/vg),
3

can be directly introduced into Equation (14) to obtain:

∂Ê

∂ζ
= i[k(ω)− ω/vg]Ê +

i

2k(ω)
∆⊥Ê +

i

2n(ω)

ω

c

P̂

ε0
(19)

Equation (19) is still a paraxial propagation equation.
We will see through various examples that all unidirectional propagation equations

originally expressed in the laboratory frame have a counterpart in the pulse frame
given by a canonical form similar to Eq. (15) with the same Q and modified Kz →
Kz − ω/vg:

∂Ẽ

∂ζ
= i[Kz(ω,k⊥)− ω/vg]Ẽ + iQ(ω,k⊥)

P̃

2ε0
(20)

It can be readily seen that Equation (19) indeed takes the canonical form of Eq. (20)
with Kz and Q defined by Eqs. (16). This means that the different ingredients in
Eq. (20) constitute the basic building blocks for the numerical implementation of a
flexible numerical tool that applies to all other carrier resolving propagation equations
having the canonical form, with a simple change of (i) the frequency and wave number
dependence of operators Kz and Q, and (ii) constitutive relations, i.e. P (E).

2.1.5 Slowly Evolving Wave Approximation

The change of reference frame made in section 2.1.4 may be applied directly to the
scalar wave equation by introducing ∂z = ∂ζ + i(ω/vg) into Eq. (11). This yields:

∂2Ê

∂ζ2
+ 2i

ω

vg

∂Ê

∂ζ
= −∆⊥Ê − [k2(ω)− ω2

v2
g

]Ê − ω2

c2
P̂

ε0
(21)

3 It is found by introducing the spectral counterpart of the second equation ∂τ = −iω into
the first equation of Eqs. (18)
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From the still exact Eq. (21), the slowly evolving wave approximation (SEWA) con-
sists in neglecting the second order derivative in ζ with respect to the second term:
|∂2
ζ Ê| � 2(ω/vg)|∂ζÊ|, or equivalently:∣∣∣∂ζÊ∣∣∣� ω

vg
|Ê|. (22)

Physically, this approximation means that the field amplitude and phase are evolving
sufficiently slowly along the propagation direction ζ, i.e., the typical length scale to
observe a variation of Ê(r, ω) is much larger than vg/ω. Note that this approximation
does not impose that the electric field be free of a fast oscillating carrier. The SEWA
remains valid for carrier-resolving models with electric fields E(r, τ) ∝ exp(−iωτ).
Originally proposed in the context of nonlinear envelope equations [16], the SEWA
does not only consist in neglecting ∂2

ζ with respect to (ω/vg)∂ζ in Eq. (21), called here

the Minimal approximation (MA), but also in another correction presented below.
We start with the MA that corresponds to Eq. (22). Under the MA, Equation (21)
becomes a unidirectional propagation equation in the form of Eq. (15), called the
Forward Wave Equation (FWE), which reads:

∂Ê

∂ζ
=

i

2(ω/vg)
∆⊥Ê + i

[k2(ω)− (ω/vg)
2]

2(ω/vg)
Ê +

ivg
2c

ω

c

P̂

ε0
. (23)

It is readily seen4 that Eq. (23) takes the same form as Eq. (20) with

K(FWE)
z (ω,k⊥) ≡ k(ω) +

vg
2ω

(
k(ω)− ω

vg

)2

− vgk
2
⊥

2ω
, Q(FWE)(ω,k⊥) ≡ vgω

c2
.

(24)
The FWE (23) is a carrier resolving paraxial propagation equation, that allowed
for simulations of filamentation and few-cyle pulse formation in argon, coupled with
a model for high harmonic generation [11,21,12,22]. In order to specify the phys-
ical content of the MA, we consider a pulse with carrier frequency ω0: E(z, t) ∝
exp(−iω0t+ik0z). In the pulse frame defined by Eq. (17), the field becomes E(ζ, τ) ∝
exp[−iω0τ+i(k0−ω0/vg)ζ]. Thus, the field is oscillating at the same carrier frequency
but the wave number seen in the pulse frame is k0−ω0/vg, justifying the assumption
that the field evolves along ζ sufficiently slowly with respect to the central wavelength,
but does not necessarily vary slowly in time. The MA as well as other approximations
of the SEWA class (see Table 1) only concern the evolution variable ζ, but do not
impose any restriction on the variation in time τ of the pulse. Taking the ζ derivative
of the field yields ∂ζE ∝ (k0 − ω0/vg)E. Inserting the latter expression in Eq. (22)
leads to the condition: ∣∣∣∣vgk0

ω0
− 1

∣∣∣∣� 1 ↔
∣∣∣vgn0

c
− 1
∣∣∣� 1. (25)

In other words, taking vg as the pulse group velocity, the MA and the SEWA are
justified if the relative difference between phase and group velocities is sufficiently
small. More generally, the MA is valid for all frequencies of the pulse which have a
phase velocity close enough to the velocity of the moving frame: |vgn(ω)/c− 1| � 1.

Comparison of Equation (23) with Eq. (19) shows that differences appear in the
linear and nonlinear dispersion operators, i.e., the frequency-dependence in Kz and

4 K
(FWE)
z (ω,k⊥) ≡ (vg/2ω)[k2(ω)− (ω/vg)

2] + ω/vg
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Q:

K(FME)
z −K(FWE)

z = − ω

2vg

(
1− n(ω)vg

c

)2

−
(

1− n(ω)vg
c

)
k2
⊥

2k(ω)
(26)

Q(FME) −Q(FWE) =
ω2

c2

(
1− n(ω)vg

c

)
. (27)

All terms on the right hand side of Eqs. (26) and (27) are first or second order terms
with respect to the quantity (1 − n(ω)vg/c). In addition to Eq. (22), the SEWA
consists in also neglecting the right hand sides of Eqs. (26) and (27), i.e. in neglecting
considering the FWE and the FME as identical.

2.1.6 Non paraxiality

The FME (19) and FWE (23) are paraxial propagation equations. We will see in this
section how to account for nonparaxiality in unidirectional propagation equations. In
Fourier space, Eq. (14) is expressed in the canonical form Eq. (15) with Kz(ω,k⊥) =

K
(FME)
z (ω,k⊥) given by Eq. (16). This expression is exactly the first order, small

k⊥/k(ω)-expansion 5 of the dispersion relation obtained from the left hand side of
the wave equation (11):

Kz(ω, k⊥) =
√
k2(ω)− k2

⊥. (28)

In order to account for nonparaxial effects while keeping the advantage of the uni-
directional propagation, the forward and backward propagators in Eq. (11) must be
rewritten in the Fourier space as :

[∂z + iKz(ω, k⊥)] [∂z − iKz(ω, k⊥)] Ẽ = −µ0ω
2P̃ (29)

As in Eq. (12), we now consider only the forward propagating component, i.e., we
make the approximation ∂z + iKz ∼ 2iKz. This leads to the nonparaxial version of
the FME, i.e. the Unidirectional Pulse Propagation Equation (UPPE):

∂Ẽ

∂z
= iKz(ω, k⊥)Ẽ +

i

2Kz(ω, k⊥)

ω2

c2
P̃

ε0
(30)

which follows the canonical form with K
(UPPE)
z given by Eq. (28) and Q(UPPE) ≡

ω2/K
(UPPE)
z c2. The UPPE (30) was obtained here by the factorization method. Sec-

tions 2.3 and 2.3.3 will present a rigorous derivation from which the physical meaning
of the approximation made in the factorization will appear.

Comparing the UPPE (30) with the FME (14), we note two important differences:
(i) The FME involves differential operators in transverse spatial variables that de-
scribe diffraction in the transverse plane and space-time focusing due to the frequency
dependence in the diffraction coefficient. Its nonparaxial version Eq. (30) is naturally
expressed in the spectral domain due to the factorization method. Therefore, it cannot
be translated easily in terms of differential operators in spatial variables, apart from
a formal writing which becomes rather intractable when numerical implementation
with finite difference is concerned. The effects of diffraction and space-time focus-
ing are still described via the wave number (k⊥) and frequency (ω) dependence in

5 |k⊥| � |k(ω)| means that the validity limit of the expansion is the paraxial propagation
regime
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Kz(ω, k⊥) [Eq. (28)], respectively, but nonparaxiality is now accounted for. (ii) Since

K
(UPPE)
z (ω, k⊥) depends on k⊥ and Q(UPPE) is obtained as a function of K

(UPPE)
z ,

wave numbers appear as new Fourier variables in the operator Q acting on nonlinear
polarization in the UPPE (30), whereas Eqs (16) show that the quantity Q(FME) is
independant of k⊥. This means that Eq. (30) is potentially much easier to imple-
ment numerically than equations in the form of the FME. Evaluation of the r.h.s. of
Eq. (30) simply requires multiplications in the spectral domain Kz(ω, k⊥)× Ẽ(ω, k⊥)
to describe linear propagation effects instead of dealing with the transverse Laplacian
in the spatial domain as in Eq. (19) and paraxial equations in general. However, the

nonlinear polarization P̃ (ω, k⊥) is often most easily evaluated in the space-time do-
main P (τ, r). Thus, the gain due to the simplicity in linear propagation in Eq. (30)
is partly compensated by the need to perform three-dimensional Fourier transforms
back and forth each time the nonlinear polarization P̃ (ω, k⊥) will be evaluated from
P (τ, r).

The axial wave number for the FME departs from that of the UPPE for large
transverse wave numbers, which corresponds to the paraxiality assumption made in
the FME. The axial wave number for the FWE exhibits a small departure from that of
the FME even for small transverse wave numbers, which corresponds to a systematic
distortion in the dispersion relation introduced when only the MA is assumed. The
SEWA corrects this distortion. However, this deviation is really small for common
focusing geometries and pulse durations. More limiting form the practical point of
view is the uncertainty in medium parameters, and availability of dispersion relations
accurate over wide frequency ranges [23].

2.2 Derivation of envelope propagation equations

Envelope models are useful when there exist separate scales for the evolution of the
pulse, a fast scale typically of the order of the wavelength, and a slow scale much
larger than the wavelength. The pulse propagation can then be advantageously de-
scribed by considering the electric field as a superposition of the pulse envelope E
with a carrier wave of frequency ω0: E(r, t, z) = E(r, t, z) exp(ik0z−iω0t). In the local
pulse frame: E(r, τ, ζ) = E(r, τ, ζ) exp[i(k0 − ω0/vg)ζ − iω0τ ]. A similar decomposi-
tion holds for the nonlinear polarization and the free charge current: {P, J}(r, τ, ζ) =
{P,J }(r, ζ, τ) exp[i(k0−ω0/vg)ζ− iω0τ ]. Propagation equations for the envelope can
be obtained by introducing this decomposition in any carrier resolving propagation
equation or in the wave equation itself. We will examine both techniques. Formally,
one simply needs to apply transformations to the evolution operator and time deriva-
tives which read:

In the laboratory frame:

∂zE = exp(ik0z − iω0t)[∂z + ik0]E (31)

∂tE = exp(ik0z − iω0t)[∂t − iω0]E (32)

In the pulse frame:

∂ζE = exp(i(k0 − ω0/vg)ζ − iω0τ)[∂ζ + i(k0 − ω0/vg)]E , (33)

∂τE = exp(i(k0 − ω0/vg)ζ − iω0τ)[∂τ − iω0]E (34)

We will see in several examples that these transformations lead to envelope propaga-
tion equations that also take the canonical form:

∂Ẽ
∂ζ

= iK(Ω,k⊥)Ẽ + iQ(Ω,k⊥)
P̃

2ε0
(35)

where Ω ≡ ω − ω0.
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2.2.1 Nonlinear Envelope Equations from Carrier-Resolving Propagation equations

In this section, we derive nonlinear envelope equations obtained when the carrier and
envelope decomposition is introduced in a carrier resolving propagation equation.
Introducing Equations (33) and ∂z = ∂ζ + ω/vg into the canonical carrier resolving
propagation equation (15) and removing the carrier wave exp[i(k0 − ω0/vg)ζ − iω0τ ]
transforms it into Eq. (35) with

K(Ω,k⊥) ≡ Kz(ω = ω0 +Ω,k⊥)− κ(ω = ω0 +Ω) (36)

Q(Ω,k⊥) ≡ Q(ω = ω0 +Ω,k⊥) (37)

where κ(ω) ≡ k0 + (ω − ω0)/vg.
Using the Forward Maxwell Equation (19) as a starting point leads to the nonlinear

envelope equation written in the spectral domain:

∂Ê
∂ζ

=
i

2k(ω)
∆⊥Ê + i[k(ω)− κ(ω)]Ê +

i

2k(ω)

ω2

c2
P̂
ε0

(38)

One notes that Eq. (38), as the original FME (19), is a paraxial equation. The
main difference is that the fields in Eq. (19) have to be treated as real quantities with
high temporal resolution of the order of the optical period, whereas the envelopes in
Eq. (38) are complex quantities that require lower temporal resolution of the order
of the pulse duration.

2.2.2 Nonlinear Envelope Equation from the wave equation

In this section, we derive Nonlinear Envelope Equations (NEE) directly from the wave
equation. Since we aim at finding a nonlinear envelope equation in the pulse frame,
we start from the wave equation (21) in the pulse frame, we introduce the carrier-
envelope decomposition (33), remove the carrier and recombine the ω/vg terms with
k0 − ω0/vg to form κ(ω) = k0 + (ω − ω0)/vg. This yields:

∂2Ê
∂ζ2

+ 2iκ(ω)
∂Ê
∂ζ

= −∆⊥Ê − [k2(ω)− κ2(ω)]Ê − ω2

c2
P̂
ε0
. (39)

Equation (39) is exact and did not require any approximation except when vecto-
rial effects in the original wave equation were neglected. We discuss below different
Nonlinear Envelope Equations obtained by performing various approximations.

Minimal Approximation (MA) From Equation (39), the only required approxima-
tion to obtain a propagation equation in the canonical form for nonlinear envelope
equations is that of neglecting ∂2

ζ . This yields a NEE that has been extensively used

in simulations of ultrashort laser pulse filamentation [3]:

∂Ê
∂ζ

=
i

2κ(ω)
∆⊥Ê + i

[k2(ω)− κ2(ω)]

2κ(ω)
Ê +

i

2κ(ω)

ω2

c2
P̂
ε0

(40)

Equation (40) contains all terms found in various types of NEEs found in the lit-
erature, derived under various approximations. To discuss these approximations, we
rewrite the second term on the right hand side of Eq. (39) as:

k2(ω)− κ2(ω) = 2κ(ω)[k(ω)− κ(ω)] + [k(ω)− κ(ω)]2. (41)
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The rationale behind this rewriting is understood from a small Ω ≡ ω − ω0 Taylor
expansion of the difference k(ω) − κ(ω) around ω0, which introduces the high-order
dispersive terms

k(ω0 +Ω)− κ(ω0 +Ω) =

+∞∑
l=2

k
(l)
0

l!
Ωl, (42)

where k
(l)
0 ≡ ∂lωk|ω0

. Note that the lowest order term in the second term on the rhs
of Eq. (41) is O(Ω4), and thus appears as a small correction with respect to the first
term on the rhs of Eq. (41) that is O(Ω2). Equation (40) is thus rewritten as

∂Ê
∂ζ

=
i

2κ(ω)
∆⊥Ê + i(k(ω)− κ(ω))Ê + i

[k(ω)− κ(ω)]2

2κ(ω)
Ê +

i

2κ(ω)

ω2

c2
P̂
ε0

(43)

which is convenient to review the various type of NEEs and compare them to the
NEE-MA, since all of them neglect the O(Ω4) third term on the rhs of Eq (43). We
will follow the terminology introduced by Kinsler et al. [14] that classifies various
approximations in the literature on nonlinear envelope equations.

Generalized Few-cycle Envelope Approximation (GFEA) This approximation pro-
posed by Kinsler et al [14] consists in first rewriting the envelope equation (39) by
using Eq. (41) as for the NEE-MA:

2iκ(ω)
∂Ê
∂ζ

= −∆⊥Ê − 2κ(ω)[k(ω)− κ(ω)]Ê + {[k(ω)− κ(ω)]2 − ∂2
ζ}Ê −

ω2

c2
P̂
ε0
. (44)

Equation (44) is still exact. Then the third term on the r.h.s. of Equation (44) is
neglected. This yields:

∂Ê
∂ζ

= i[k(ω)− κ(ω)]Ê +
i

2κ(ω)
∆⊥Ê +

i

2κ(ω)

ω2

c2
P̂
ε0
, (45)

which has a counterpart in the space-time domain:

∂E
∂ζ

= iD(i∂τ )E+
i

2k0

(
1 + i

k′0
k0
∂τ

)−1

∆⊥E+
i

2

ω0

n0c

(
1 + i

k′0
k0
∂τ

)−1(
1 +

i

ω0
∂τ

)2 P
ε0
,

(46)

where D(i∂τ ) ≡
∑+∞
l=2

k
(l)
0

l! (i∂τ )l.
Thus there are two approximations in the GFEA: (i) An implicit small Ω-Taylor

expansion of the dispersion operator is assumed and O(Ω4) terms are neglected. The
neglected terms precisely make the remaining dispersive terms of the NEE-GFEA
(45) identical to those of the Forward Envelope Equation (38). (ii) The envelope is
evolving slowly with respect to the propagation variable ζ: |∂ζE| � |k0E|. In the orig-
inal terminology introduced for the linear version of the NEE-GFEA (45), i.e. in the
absence of a nonlinear polarization, the latter approximation was called the Slowly

Evolving Envelope Approximation (SEEA) [15]. The operator (1 + i(k′0/k0)∂τ )
−1

in
front of the diffraction term describe space-time focusing, i.e, a frequency dependence
of diffraction carried by the effective propagation constant κ(ω) = k0 +k′0(ω−ω0). In
medium with normal dispersion, red frequencies propagate faster than blue frequen-
cies and a pulse with flat phase front would normally broaden. For a beam, due to
space-time focusing, red frequencies are diffracted at larger angles than blue frequen-
cies making diffraction equivalent to an anomalous dispersive phenomenon that can
compensate normal dispersion [15].
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Slowly Evolving Wave Approximation (SEWA) The SEWA was explained in the
context of carrier-resolving equations. In the context of Nonlinear Envelope Equa-
tions, the SEWA was introduced by Brabec and Krausz [16] and consists in the same
approximation as the GFEA with an additional approximation on the propagation
constant κ(ω) ∼ n0ω/c appearing in the second and third terms6 on the r.h.s. of
Eq. (45). This leads to the spectral version of the Nonlinear Envelope Equation un-
der the SEWA (NEE-SEWA):

∂Ê
∂ζ

=
ic

2n0ω
∆⊥Ê + i[k(ω)− κ(ω)]Ê +

i

2n0

ω

c

P̂
ε0
, (47)

which was initially derived in the space-time domain [16]. From the NEE-GFEA, the
approximation made to derive the NEE-SEWA are equivalently expressed in the tem-
poral domain as (1 + i(k′0/k0)∂τ ) ∼

(
1 + i/ω0

−1∂τ
)
, thus the space-time counterpart

of the NEE-SEWA reads:

∂E
∂ζ

= iD(i∂τ )E +
i

2k0

(
1 +

i

ω0
∂τ

)−1

∆⊥E +
i

2

ω0

n0c

(
1 +

i

ω0
∂τ

)
P
ε0
. (48)

The SEWA introduces a slight distortion in the space-time focusing operator
(1 + (i/ω0)∂τ )

−1
, obtained from its original version (1 + i(k′0/k0)∂τ ) by the change

k′0/k0 → ω0
−1 which amounts to neglecting the difference between phase and group

velocities c/n0 = ω0/k0 ∼ 1/k′0, as seen from the frequency dependence of effective
propagation constant for the NEE-GFEA and NEE-SEWA k0 +k′0(ω−ω0) ∼ k0ω/ω0.

Slowly Varying Envelope Approximation (SVEA) At the lowest order, we may retain
only the second order dispersive term in Equation (42), or the second and third orders:

k(ω0 +Ω)− κ(ω0 +Ω) =
k

(2)
0

2
Ω2 +O(Ω3), (49)

and by keeping the lowest order in κ(ω0 + Ω) ∼ k0 and ω ∼ ω0, we obtain from
Eq. (40) an equation of the Nonlinear Schrödinger (NLS) type that is valid for pulses
with a narrow spectrum:

∂Ê
∂ζ

=
i

2k0
∆⊥Ê + i

k
(2)
0

2
Ω2Ê +

i

2n0

ω0

c

P̂
ε0
. (50)

Strictly speaking, the Nonlinear Schrödinger Equation involves a cubic dependence
of the nonlinear polarization P ∝ |E|2E as obtained with a Kerr nonlinearity (see
section on the medium response) and is usually derived by introducing the carrier
and envelope decomposition directly into the wave equation written in the space-
time domain.

∂E
∂ζ

=
i

2k0
∆⊥E − i

k
(2)
0

2

∂2E
∂τ2

+
i

2n0

ω0

c

P
ε0
. (51)

As written in Eq. (50), the NLS takes the canonical form of envelope equations.
All nonlinear envelope equations derived in the previous sections can be considered as
extended NLS equations in the sense that they can be obtained from the NLS equa-
tion by introducing the proper frequency dependence in the propagation constant,
dispersion operator, and nonlinear dispersion.

6 It does not effectively appear in the first term. This can be viewed from the Taylor
expansion (42).
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2.3 Derivation of carrier-resolving pulse propagation models

The following section is devoted to rigorous derivations of Unidirectional Pulse Prop-
agation Equations (UPPE). The idea here is to start from Maxwell’s equations and
avoid any approximation in the propagation part of the problem. As the reader will
see, approximations become only necessary at the point when nonlinear interactions
are considered, and then they only have to do with splitting an exact system of pulse
propagation equations into two decoupled unidirectional equations.

The UPPE approach has been previously derived in two flavors, depending on
direction of the numerically simulated evolution [9,4]. The latter can proceed either
along the time coordinate, or it can follow a wave packet along one of the spatial
coordinates (usually chosen as z) in the direction of the laser beam.

In the first case, termed time-propagated evolution, one has an initial condition
(i.e. a given description of the electric and magnetic fields) specified in all space for
a given initial time. The evolution is calculated along the time axis, and it naturally
reflects the structure of Maxwell’s equations.

In the second case, termed z-propagated evolution, the initial condition is given as a
function of the local pulse time and of two transverse (with respect to the propagation
direction) coordinates. Numerical evolution then proceeds along the propagation axis.
From the mathematical point of view, this case is an initial value problem very much
the same way the t-propagated case is. However, from the physical point of view
this is a rather subtle issue because the true initial condition requires knowledge of
the total field in the past and in the future. This includes the light which may be
nonlinearly reflected from the focal region of an experiment. Only if we can assume
that this is sufficiently weak, we can practically solve the corresponding initial value
problem.

The time-propagated approach is common for solvers based on direct integration
of Maxwell’s equations. Accordingly, the time-propagated versions of UPPE are more
suitable for tight-focusing scenarios when the non-paraxial effects start to play a role.

On the other hand, the z-propagated equations are easier to use in situations
which allow to neglect longitudinal field components as contributing sources of non-
linear material responses. That is the main reason the z-propagated approach is more
common, especially in nonlinear optics. In this text, we will restrict our attention
to the z-propagated case. However, numerical techniques described here are directly
applicable to any t-propagated simulator implementation.

In relation to the previous section, the following material will reveal one interest-
ing fact. We have seen that some of the equations derived from the wave equations
seem to require certain approximations. Now it will be shown that despite of this,
the resulting equations are in a certain sense exact, and that assumptions needed for
the Laplacian factorization are in fact not necessary but only sufficient conditions.
This apparent contradiction originates in the fact that a solution to a unidirectional
propagation equation must not satisfy the wave equation. Only two coupled unidirec-
tional solutions (propagating in opposite directions) must, and indeed obey the wave
equation.

2.3.1 A simplified case first: One-dimensional Maxwell’s equations

The most important ingredient in unidirectional evolution equations is the separation
of those wave-form portions which propagate in opposite direction. To emphasize
this, and also to make the subsequent full derivation easier to digest, we start with
a simplified case of one-dimensional Maxwell’s equations. This reduced case is free of
notational complications while it illustrates all important steps of the fully vectorial
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treatment. In particular, it shows very clearly that a pair of unidirectional equations
is exact.

The one dimensional Maxwell equations reduced to linearly polarized electric field
can be written as (for convenience and notational simplicity, appropriate scaled units
are used in this subsection):

−∂zH = ∂tE + ∂tP
−∂zE = ∂tH (52)

where z is the optical axis and E and H are implicitly understood to be orthogonal to
each other and to z. P represents nonlinear polarization that itself is a functional of
the electric field history at a given spatial point. Section 2.5 provides several examples
the reader can keep in mind, but a concrete form of this nonlinearity is completely
unimportant for the purpose of the following derivation.

This simplified Maxwell system has harmonic waves as solutions in the linear
regime when P = 0:

Eλ(ω, z, t) = E0 exp [−iωt+ iλk(ω)z]
Hλ(ω, z, t) = λH0 exp [−iωt+ iλk(ω)z] ω > 0 λ = ±1 (53)

The direction indicator λ selects forward and backward (or left and right) propagating
waves. We can use these plane-waves as a basis in which to express a full, nonlinear
solution as

E =
∑
µ=±1

∫
dΩAµ(Ω, z)Eµ(Ω, z, t) H =

∑
µ=±1

∫
dΩAµ(Ω, z)Hµ(Ω, z, t)

Here, Aµ(Ω, z) are spectral amplitudes for which we have to find an evolution equa-
tion. Taking (52), and multiplying with the above linear basis solutions we get

Eλ∂zH = −Eλ∂tE − Eλ∂tP
Hλ∂zE = −Hλ∂tH (54)

In these equations and in following formulas, we assume that the arguments of Eλ and
Hλ are Ω, z, t. We now add these two equations, and collect terms that constitute full
derivatives while using the fact that Hλ, Eλ solve the linear Maxwell system:

∂z[EλH +HλE] = −∂t[EλH +HλE]− Eλ∂tP (55)

The next step is to integrate over the whole domain perpendicular to the direction
of propagation. In this simplified case it means the t domain alone. After integration
over t, the middle term gives rise to boundary terms at past and future temporal
infinities. To get rid of these, we will restrict our solution space to those functions
which satisfy

lim
t→±∞

[EλH(z, t) +HλE(z, t)] = 0 (56)

What this condition requires is that for every fixed z along the laser beam axis, the
field will vanish if we wait for a sufficiently long time. In other words, light energy
will dissipate into positive and negative z-infinities. This is certainly a very benign
assumption in the context of pulse propagation, because this is exactly what happens
to localized pulsed wave packets - they eventually disappear from our sight.

The above condition eliminates the middle term in (55), and the rest can be
transformed as follows. First, in the left-hand side we use the fact that the basis
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solutions are orthogonal, and after time integration they eliminate the sum over Ω
and the modal index µ:∫

dt∂z[Eλ(ω, z, t)H +Hλ(ω, z, t)E] =

=

∫
dt∂zEλ(ω, z, t)

∑
µ=±1

∫
dΩAµ(Ω, z)Hµ(Ω, z, t)+

+

∫
dt∂zHλ(ω, z, t)

∑
µ=±1

∫
dΩAµ(Ω, z)Eµ(Ω, z, t) =

= 2λE0H0∂zAλ(ω, z) (57)

On the right-hand side of Eq. (55), the polarization term yields essentially a Fourier
transform

−
∫
dtEλ(ω, z, t)∂tP = iω exp [−iλk(ω)z]P̂ (ω, z)

Collecting both sides, we arrive at an evolution equation for spectral amplitudes:

∂zAλ(ω, z) =
iω

2λE0H0
exp [−iλk(ω)z]P̂ (ω, z) (58)

To obtain a corresponding equation for the electric field, we recall that

Êλ(ω, z) = Aλ(ω, z) exp [iλk(ω)z]

and expressing its z-derivatives using the evolution equation (58) for the spectral
amplitudes, we have:

∂zÊλ(ω, z) = iλk(ω)Êλ(ω, z) + iλ
ω

2E0H0
P̂ (ω, z)

This is a pair of equations for forward and backward (λ = ±1) propagating fields.
The two are coupled through the polarization which depends on their sum. Explicitly,

P (z, t) = P [E+(z, t) + E−(z, t)] .

where the concrete functional form of this dependence is not important for the present
purpose, but as an example one can consider the instantaneous Kerr nonlinearity for
which the polarization is simply proportional to the cube of the electric field (for more
examples, see section 2.5):

P (z, t) = P [E+(z, t) + E−(z, t)] ∝ [E+(z, t) + E−(z, t)]3

The above derivation illustrates the scheme we will use in the next Section to derive
the general, fully vectorial Unidirectional Pulse Propagation Equation. The important
point to note here is that within the admissible subspace specified by condition (56),
the pair of unidirectional equations is exact.

2.3.2 Maxwell’s equations as a boundary value problem for pulsed beam propagation

As a first step in derivation of various versions of UPPE, we derive an exact coupled-
modes system of equations. Electromagnetic fields of a light pulse propagating along
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the z-axis can be expanded into modal contributions that reflect the geometry of the
waveguide (we can consider a homogeneous medium as a special case of the latter).

E(x, y, z, t) =
∑
m,ω

Am(ω, z)Em(ω, x, y)eiβm(ω)z−iωt

H(x, y, z, t) =
∑
m,ω

Am(ω, z)Hm(ω, x, y)eiβm(ω)z−iωt (59)

Here, m labels all transverse modes, and an initial condition Am(ω, z = 0) is supposed
to be given or calculated from the known field values at z = 0. Note that the above
expansion is valid for the transverse components only, and that the modal index m is a
short hand for all quantities which are required to specify a unique propagation mode.
For example, in a homogeneous bulk medium, the eigen modes are the well known
plane waves, and the index m represents polarization, two transverse wave numbers,
and a binary value selecting the forward or backward direction of propagation.

To save space and reduce clutter, the following short-hand notation will be used
below

Em ≡ Em(ω, x, y)eiβm(ω)z−iωt

Hm ≡ Hm(ω, x, y)eiβm(ω)z−iωt . (60)

We consider a non-magnetic medium (µ = µ0) with a linear permittivity ε(ω, x, y)
that does not depend on the propagation coordinate z which coincides with what we
consider forward and backward propagation direction. Note that the permittivity or,
equivalently, the index of refraction may depend on the transverse coordinates x, y.
That would be the case for example in a micro-structured waveguide, or in a hollow-
core fiber or capillary; at this first stage, we want to treat bulk media and fiber-like
geometries together. Later we can branch and derive separate, specialized equations
for waveguides and for bulk media.

The starting point of our derivations is the Maxwell equations:

J + ∂tP + ε0∂tε ∗E = ∇×H
−µ0∂tH = ∇×E (61)

where the star represents a convolution so that the term is a short hand for

ε0∂tε ∗E = ε0∂t

∫ ∞
0

dτε(τ)E(t− τ)

Here ε(τ) is the temporal representation of frequency-dependent permittivity ε(ω).
The same notation will be used for both quantities, and their arguments will serve to
distinguish them where needed.
As a first step, we scalar-multiply Maxwell’s equations by complex conjugate modal
fields

E∗m.(J + ∂tP) +ε0E∗m.∂tε ∗E = E∗m.∇×H
−µ0H∗m.∂tH = H∗m.∇×E . (62)

Using the formula b.(∇× a) = ∇.(a×b) + a.(∇×b), we transform both right-hand
sides to obtain

E∗m.(J + ∂tP) + ε0E∗m.∂tε ∗E = ∇.[H× E∗m] + H.[∇× E∗m]
−µ0H∗m.∂tH = ∇.[E×H∗m] + E.[∇×H∗m] . (63)
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Now we can take advantage of the fact the modal fields themselves satisfy Maxwell’s
equations

∇× E∗m = −µ0∂tH∗m
∇×H∗m = ε0∂tε ∗ E∗m , (64)

and therefore the previous equations can be written as

E∗m.(J + ∂tP) + ε0E∗m.∂tε ∗E = ∇.[H× E∗m]− µ0H.∂tH∗m
−µ0H∗m.∂tH = ∇.[E×H∗m] + ε0E.∂tε ∗ E∗m (65)

Next, we subtract the two equations and collect terms that constitute full time deriva-
tives

E∗m.(J + ∂tP) + ∂t[ε0E∗m.ε ∗E] = ∇.[H× E∗m]− ∂t[µ0H∗m.H]−∇.[E×H∗m] . (66)

Now we integrate over the whole xyt domain. Note that all terms except the first and
∂z, which is implicit in the ∇. operator, are derivatives that give rise to surface terms
after integration over x, y, t. These surface terms are supposed to vanish far from the
axis of the laser beam, as well as in past and future temporal infinities. Intuitively,
admissible solutions include spatially and temporally localized pulse-like solutions.
As a consequence, the only surviving derivatives will be ∂z:∫
E∗m.(J + ∂tP) dxdydt = ∂z

∫
z.[H× E∗m] dxdydt− ∂z

∫
z.[E×H∗m] dxdydt (67)

Here and in what follows, t integrations are understood as:
∫

dt ≡ 1
T

∫ +T/2

−T/2 dt where T

is a large normalization volume, and integrals over x, y are understood in a similar way.
This will give us a convenient way to obtain the correct normalization and translate
it into implementation which will be in terms of numerical Fourier transforms.
Because only transverse field components enter the above equation, we can use our
modal expansion here (recall that those are only valid for transverse vector compo-
nents): ∫

E∗m.(J + ∂tP) dxdydt =

∂z
∫
z.[
∑
n,Ω An(Ω, z)Hn(Ω)× E∗m(ω)]eiβn(Ω)z−iΩte−iβm(ω)z+iωt dxdydt

−∂z
∫
z.[
∑
n,Ω An(Ω, z)En(Ω)×H∗m(ω)]eiβn(Ω)z−iΩte−iβm(ω)z+iωt dxdydt .

(68)

Integration over time gives a Kronecker delta between angular frequencies, δΩω, which
in turn reduces the sum over Ω:∫

E∗m.(J + ∂tP) dxdydt =

∂z
∫
z.[
∑
nAn(ω, z)Hn(ω, x, y)× E∗m(ω, x, y)]eiβn(ω)ze−iβm(ω)z dxdy

−∂z
∫
z.[
∑
nAn(ω, z)En(ω, x, y)×H∗m(ω, x, y)]eiβn(ω)ze−iβm(ω)z dxdy .

(69)

Collecting like terms results in an equation∫
E∗m.(J + ∂tP)dxdydt = ∂z

∑
n

An(ω, z)eiβn(ω)ze−iβm(ω)z×∫
z.[Hn(ω, x, y)× E∗m(ω, x, y)− En(ω, x, y)×H∗m(ω, x, y)] dxdy . (70)
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At this point we are going to use a general property of electromagnetic modal fields
which constitute an orthogonal basis: all radiative waveforms can be expressed as
their linear combinations. To calculate such expansions, one can utilize the following
orthogonality relation∫

z.[Em ×H∗n −Hm × E∗n] dxdy = 2δm,nNm(ω) (71)

Here Nm(ω) is a normalization constant, whose explicit functional form has to be
derived for each concrete set of modes.

Orthogonality of modes is used to reduce the sum over n in (70)∫
E∗m.(J + ∂tP) dxdydt = −∂z

∑
n

An(ω, z)eiβn(ω)ze−iβm(ω)z2δm,nNm(ω) , (72)

and we finally obtain an evolution equation for our expansion coefficients:

∂zAm(ω, z) = − 1

2Nm(ω) XY T

∫ +T/2

−T/2
dt

∫ +Y/2

−Y/2
dy

∫ +X/2

−X/2
dx×

e−iβm(ω)z+iωtE∗m(ω, r).[J(r, t) + ∂tP(r, t)] (73)

This is the common representation for various z-propagated unidirectional equations,
and in fact the form in which numerical solutions should be implemented. In the
following sections, we will specialize this to the case of bulk media.

2.3.3 z-propagated UPPE for homogeneous media: General case

In this section, Eq. (73) is specialized for the case of a homogeneous medium. This
is done by inserting explicit expressions for a given family of modal fields. In a bulk
medium, these field modes are the well-known plane waves. They can be labeled by
transverse wave numbers kx, ky, by a polarization index s = 1, 2, and by a ± sign
signifying the direction of propagation along the z direction. Thus the index m, which
we used to label modes in the preceding Section, is actually a list:

m ≡ kx, ky, s,± . (74)

The following notation will be used for the frequency- and wave number-dependent
propagation constant of a plane wave characterized by its angular frequency ω:

βkx,ky,s,±(ω) ≡ kz(ω, kx, ky) =
√
k2(ω)− k2

x − k2
y , (75)

where k2(ω) ≡ ε(ω)ω2/c2 depends on the dispersive properties of the medium through
the permittivity ε.
Electric and magnetic amplitudes in plane waves are mutually determined by Maxwell’s
equations. We can choose them as

Ekx,ky,s,± = es exp [ikxx+ ikyy ± ikz(ω, kx, ky)] (76)

Hkx,ky,s,± =
1

µ0ω
k× Ekx,ky,ω,s,± . (77)

The polarization of modal fields is determined by polarization vectors es=1,2 which
are of unit length and are normal to the wave-vector

k = {kx, ky, kz ≡
√
k2(ω)− k2

x − k2
y} . (78)
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Using the above formulas, it is straightforward to calculate the modal normalization
constant

2Nkx,ky,s,±(ω) =

∫
z.[Em ×H∗m −Hm × E∗m] dxdy =

2z · [es × (k× es)]
1

µ0ω
= ±2kz(ω, kx, kz)

1

µ0ω
(79)

Nkx,ky,s,±(ω) = ±kz(ω, kx, kz)
µ0ω

. (80)

Now we can insert expressions for modal fields and the corresponding normalization
constant into coupled mode equation Eq. (73) to obtain

∂zAkx,ky,s,±(ω, z) = ∓ωµ0

2kz
e∓ikzz

∫
dxdydt

LxLyT
ei(ωt−k·r) × es · [J(r, t, z) + ∂tP(r, t, z)]

(81)
The above integral is nothing but a spatial and temporal Fourier transform, and one
can write the equations in the spectral domain

∂zAkx,ky,s,+(ω, z) =
ω

2ε0c2kz
e−ikzzes · [iωPkx,ky (ω, z)− Jkx,ky (ω, z)] . (82)

This is the propagation equation that will actually be solved numerically because it
is cast in terms of the slowest variables our propagation problem has. We can see that
the only source of evolution in spectral amplitudes is nonlinearity.

For those who prefer to see evolution equations for electric fields proper, we express
the above in terms of the electric field rather than in terms of modal expansion
coefficients. From a modal expansion, the transverse part of the electric field is

E⊥kx,ky,+(ω, z) =
∑
s=1,2

e⊥s Akx,ky,s,+(ω, z)eikz(ω,k⊥)z , (83)

and therefore its z derivative reads

∂zE
⊥
kx,ky,+(ω, z) = ikz(ω,k⊥)E⊥kx,ky,+(ω, z) +

∑
s=1,2

e⊥s ∂zAkx,ky,s,+(ω, z)eikz(ω,k⊥)z

(84)
Using Eq. (82), we obtain the vectorial UPPE for a homogeneous medium:

∂zE
⊥
kx,ky,+(ω, z) = +ikzE

⊥
kx,ky,+(ω, z)+∑

s=1,2

e⊥s es · [
iω2

2ε0c2kz
Pkx,ky (ω, z)− ω

2ε0c2kz
Jkx,ky (ω, z)] (85)

Of course, an analogous equation holds for the backward propagating component:

∂zE
⊥
kx,ky,−(ω, z) = −ikzE⊥kx,ky,+(ω, z)−∑

s=1,2

e⊥s es · [
iω2

2ε0c2kz
Pkx,ky (ω, z)− ω

2ε0c2kz
Jkx,ky (ω, z)] (86)

This pair of equation is exact and completely analogous to the pair of z-propagated
equations discussed in the previous section. Because the nonlinear polarization in
these equations results as a response to the complete electric field, they cannot be
used to calculate the forward field in isolation (i.e. without its backward propagating
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counterpart). The equation becomes unidirectional only when the following approxi-
mation can be adopted:

P(E),J(E)→ P(Ef ),J(Ef ) (87)

In other words, to obtain a closed system which is restricted to a single direction,
we must require that nonlinear polarization can be calculated accurately from only
the forward propagating field. This means that UPPE is only applicable when the
back-reflected portion of the field is so small that its contribution to the nonlinearity
can be neglected. Note that this assumption is inherent in any one-way propagating
pulse evolution equation. Since it is the only approximation required for the UPPE,
it should not be surprising that all other pulse propagation models can be derived
from the UPPE by adopting further approximations.

2.3.4 z-propagated UPPE: Simplified, practical version

Equation (85), with nonlinear polarization approximated by Eq. (87) can easily be-
come a rather large system to solve numerically. This is especially true for experiments
with wide-beam, multi-TW lasers. Fortunately, in most cases transverse dimensions of
resulting structures remain relatively large in comparison to wavelength, and further
approximations are possible. For example in femtosecond filamentation in gases, the
typical diameter of the filament core is about hundred microns which dimension is
large in comparison with the laser wavelength. Consequently, the longitudinal vector
component of the electric field is much smaller than the transverse (x, y) components,
and can be neglected in calculation of the nonlinear medium response. It thus makes
sense to take advantage of this fact to obtain a simpler equation.
Concretely, one can neglect the z components of the field and polarization vectors.
In such a situation the sum over polarization vectors reduces approximately to unity∑

s=1,2

e⊥s es ≈ 1 . (88)

To see this, it is enough to recall that the left-hand side constitutes a projector onto the
wave-vector (recall that these vectors are mutually orthogonal). As the wave-vector
is pointing in the direction almost parallel to the beam axis, it is also approximately
a unity operator in the vector subspace spanned by x, y.

Replacing the transverse projection by unity, the full UPPE simplifies into an
equation for transverse component(s)

∂zEkx,ky (ω, z) = ikzEkx,ky (ω, z) +
iω2

2ε0c2kz
Pkx,ky (ω, z)− ω

2ε0c2kz
Jkx,ky (ω, z) ,

kz =
√
k2(ω)− k2

x − k2
y . (89)

This is the most useful form for practical calculation, and is therefore called simply
UPPE. While we write it as a scalar equation, it should be understood that it is in
general coupled to its counterpart governing the other polarization. The two polar-
ization components of the electric field both contribute to the nonlinear polarization
and this is how they become mutually coupled.

2.3.5 Other propagation models as approximations of UPPE

The previous section showed that Unidirectional Pulse Propagation Equations can be
rigorously derived under a very general assumption that nonlinear interaction between
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light and matter occurs in a regime which makes it possible to calculate the nonlinear
medium response with sufficient accuracy only from the forward-propagating field
component. Because this is how all one-way pulse propagation equation treat the
nonlinearity, one can expect that other types of equations can be derived from UPPE.
In fact, a universal scheme to derive all other propagation models can be given.

Several types of unidirectional propagation equation appear frequently in the liter-
ature on nonlinear optics. The most important examples are Non-Linear Schrödinger
(NLS) equation [17], Nonlinear Envelope Equation [16] (NEE), the First-Order Prop-
agation equation [13] (FOP), Forward Maxwell’s equation [10] (FME), and several
other equations that are closely related to these. All of these can be understood as
approximations to the UPPE.

The unified derivation procedure, described in detail in Ref.[4], brings various
propagation equations under one roof, and elucidates exactly what approximations
must be assumed to justify their original derivations. This allows us to compare
physical assumptions and approximation underlying different equations. It also re-
veals relations between equations which may not be obvious either because of their
apparently different form, or because of different methods used in the original deriva-
tions.

It is instructive to break the derivation procedure into several steps. As a first
step, we adopt a scalar, one-component approximation and write the Unidirectional
Pulse Propagation Equation in the canonical form:

∂zEkx,ky (ω, z) = iKzEkx,ky (ω, z) + iQ
Pkx,ky (ω, z)

2ε0
(90)

where

Kz(kx, ky, ω) =
√
k2(ω)− k2

x − k2
y (91)

and

Q(kx, ky, ω) =
ω2

c2Kz(kx, ky, ω)
(92)

will be called nonlinear coupling. In most cases, the concrete form of the nonlinear
polarization P is unimportant, and we will assume that it can be specified in terms
of an algorithm which accepts the electric field (in general as a function of time at a
given spatial location) as its input.

Let us note that this one-component, or scalar representation can be still under-
stood as a description of a single polarization in a coupled system describing two
transverse vector components of an optical field. While each equation appears scalar,
the two become coupled through the polarization term, for example due to the non-
linear birefringence. These coupling effects can play a role even if a laser beam is
much wider than the light wavelength, and can lead to a rich polarization dynamics
within femtosecond filaments. What is neglected at this step is the longitudinal part
of the electric field. That only becomes important when the beam focuses to a size
comparable with wavelength. However, in the naturally occurring filaments, i.e, with-
out focusing by short focal-length optical elements, such extreme focusing is never
achieved, because self-focusing collapse is always arrested either by chromatic disper-
sion [28] or by the free-electron induced de-focusing [7,29]. Thus, for many practical
purposes, the above representation is sufficiently rich and accurate.

In the second derivation step, we replace couplings Kz and Q by suitable approx-
imations. In most cases, they are closely related to Taylor expansions in frequency
and in transverse wave numbers. It is at this stage that artificial parameters are in-
troduced into a propagation model (a typical example is the reference frequency).
It is important to keep in mind that information extracted from simulations should
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not depend on such degrees of freedom. In this respect, the improvements introduced
into various pulse evolution equations can be viewed as corrections which (partially)
restore the invariance of the model with respect to these choices.

Having specified an approximations for the linear and nonlinear coupling, we are
still in the real-field representation. However, most of the published models are written
using envelopes. Thus, in the next step, we obtain envelope equations. To do this, one
can expresses the field in terms of an envelope by factoring out the carrier wave at
a chosen reference angular frequency ωr with the corresponding wave-vector kr =
Kz(0, 0, ωr):

E(r, t, z) = A(r, t, z)ei(krz−ωrt) (93)

A similar factorization is of course introduced for the nonlinear polarization P (r, t, z)
as well.

The final step consist in transforming the equation from the spectral- to the real-
space representation. Mathematically, this is nothing but a Fourier transform, and
the following standard replacement rules for differential operators provide quick and
easy way to do this transformation:

ikx → ∂x iky → ∂y (ω − ωR)→ i∂t ∂z → ik(ωR) + ∂z (94)

Finally, in most cases we also transform to a frame moving with a suitable group
velocity such that the pulse remains close to the center of the computational domain.
We invite the reader to consult reference [4] which shows details of application of
this method to several examples of propagation equations. Also note that the above
procedure is closely related to that described in Section 2.2, where the Nonlinear
Envelope Equation was derived from the Forward Maxwell Equation.
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2.4 Pulse propagation in confined geometries

Most formulations of the nonlinear, long-distance pulse propagation problem are re-
stricted to bulk media. A notable exception is the case of a wave-guiding structure,
for example a capillary or a hollow waveguide, in which the refractive index only
depends on coordinates perpendicular to the direction of propagation. Spectral uni-
directional propagation equations have been derived for such structures in which the
refractive index is z-independent [4]. However, knowledge of the complete system of
propagating modal solutions is required if they have to be applied in practice. This
is a show-stopper even in the case that exact solutions can be found. One source
of difficulty is that the propagation properties of modal fields depend on solutions
to an eigenvalue equation for the propagation constant, and that has to be solved
numerically. Moreover, if the optical field is interacting with the medium, say one
enclosed within the waveguide, the nonlinear response must be calculated for each
spatial point. This in turn means that a sufficiently fast algorithm must be available
to convert modal expansion representation into the real-space representation. While
for the bulk media this is easily achieved with the help of fast Fourier transforms,
such spectral transforms are in general not available for wave-guiding structures. This
prevents us from writing down the evolution equations for the modal field amplitudes
in a sufficiently closed form amenable to practical calculations.

2.4.1 Approximate methods using modal expansions

Fortunately, sometimes we can calculate a few important modes, and if the nonlinear
propagation regime is such that the energy transferred to higher-order modes can
be neglected, simulations are possible [48,49]. An extreme example is of course pulse
propagation in fibers which have been treated in the single-transverse mode approx-
imation with great success. However, more complex systems become also of great
interest more recently. Because they are often connected with the optical filamenta-
tion regime, we will refer to this as filamentation in restricted geometries.

An important example is a hollow-core photonic crystal fiber. As a rule such fibers
are simulated with the same technology as the traditional fiber propagation problems;
Namely, the optical field is approximated by a single mode propagating in the hollow
core, and its (frequency-dependent) propagation properties are usually obtained from
numerical mode solvers. It is also possible to utilize a higher number of guided modes
when they can be reasonably approximated. We describe such an approach next,
using an example of planar leaky waveguide.

The planar leaky waveguide is in fact an important system in extreme nonlinear
optics. It attracted attention as a device with a potential for control of femtosecond fil-
aments, pulse self-compression, and for scaling-up the energy of high-intensity pulses.
The method described here applies equally well to modeling intense pulses propa-
gating in capillaries (important for High-Harmonic Generation), and we mention the
required modifications later. Propagation effects in such waveguiding systems are im-
portant, especially in the recently explored regimes that involve a filament created
within the capillary core.

Let us first consider an implementation of a spectral, unidirectional pulse propa-
gation solver for a three-dimensional, homogeneous bulk medium. It is usually imple-
mented in terms of plane waves, playing the role of the complete system of modes.
With the help of this modal system, all quantities are expressed, and subsequently
stored in the form of spectral Fourier amplitudes. What are the relevant modes of a
planar hollow waveguide formed between two infinite slabs of glass? Obviously the
dimensions parallel to the slabs retain plane waves as their eigenmodes. The eigen-
modes in the direction perpendicular to the air-glass interfaces are of several kinds;
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including those confined to the glass, and those propagating predominantly within
the hollow core. The latter can form superpositions that exhibit maxima in the core
and are thus interesting for us. However, these are radiation modes, and constitute
a continuous family, so it is rather difficult to work with them directly. Fortunately,
it is the special superpositions of the radiation modes called leaky modes that are
important here.

In the first approximation, the leaky modes centered in the core can be approxi-
mated by Fourier modes of the core gap which have zeros at the air-glass boundary.
Then, the bulk medium implementation of the pulse propagation solver only needs to
be modified in two simple ways. First, instead of periodic basis functions, the space
must be restricted such that zeros at the boundary are preserved at all times - this
amounts to replacing FFT transforms with their sine-transform versions. Second,
the leaky modes exhibit substantial propagation losses, and this must be properly
reflected in the model. In the spectral representation this is also achieved very sim-
ply by adding an appropriate amount of imaginary part to the modal propagation
constants. This is on the “background,” or in addition to the whatever chromatic
dispersion is caused by the medium filling in the waveguide core. Note that the geo-
metric, or waveguide, component of dispersion is automatically accounted for through
the transverse wavenumber exactly the same way as in the bulk case. The real part
βp and the imaginary part αp of the mode-dependent wave vector kp = βp + iαp for
propagation within a waveguide of radius a is then given by

βp = k(ω)

√
1−

(
pπ

2k(ω)a

)2

, αp =

(
pπ

2k(ω)a

)2 n2
g

a
√
n2
g − 1

(95)

The modification of the solver for a capillary geometry is even simpler. From the
modeling point of view, the only technical difference between the planar and axially
symmetric geometries is the use of the Fourier and Hankel spectral transform, re-
spectively, which are needed for the implementation of the spectral propagator. The
modes used in a radially symmetric solvers are Bessel functions J0(k⊥r) that have
zeros at the boundary of the computational domain, and they are already approxi-
mations of the leaky modes in cylindrical waveguides (capillaries). For example, the
lowest-order mode is J0(2.405r/a). Once the free-space, radially symmetric propaga-
tor is implemented, the only modification required is an addition of the absorption
dependent on the transverse wavenumber of each mode. The corresponding formulas
can be found in the Marcatili’s paper[50]. The loss-related modification of the modal
propagation constant is analogous to that above:

αm =
(um

2π

)2 λ2

a3

1√
n2
g − 1

(96)

with um standing for the zero of the Bessel function.
One practically important aspect of simulations in planar hollow waveguides and

capillaries is that only a few transverse modes are usually necessary. This is because
the propagation loss of a mode scales with the square of its order as can be seen from
the formulas above. Higher-order modes are effectively damped and their energy is
“evacuated” into the glass cladding. Depending on the ratio between the wavelength
and the waveguide core radius, as few as six to ten modes may be sufficient. Simula-
tions thus become effectively close to one-dimensional, and two-dimensional in cap-
illaries and slabs, respectively. Including only relevant modes with the lowest losses
brings therefore substantial saving in compute times.
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The above-described approaches have been used with success in recent investiga-
tion into extreme filamentation regimes. Midorikawa’s [51] and Mysyrowicz’s [52–55]
groups in particular investigated planar slab waveguide arrangements as means to
scale up the power in femtosecond filamentation while improving control and par-
tially suppressing unwanted break-up into multiple filaments. It was also shown that
efficient pulse compression can be achieved in the interplay between filamentation
and effects induced by the leaky wave-guiding structure. The computational methods
are described in detail in Ref. [53,55]

Another application example is high-harmonic generation in capillaries pressurized
with inert gases [56]. As demonstrated recently, an interesting new regime occurs
which exhibits signatures of filamentation confined within the capillary bore, and
where the efficiency of extremely-high (up to 5-thousand) harmonic order radiation
generation is controlled by the dynamics of the mid-infrared excitation pulse.

2.4.2 Nonlinear pulse propagation in waveguides: generalized UPPE.

Most pulse propagation models are designed for bulk media, and can not deal with
situations in which material interfaces are present that affect the propagation of the
laser pulse. This subsection discusses a generalized version of pulse propagation equa-
tions which overcomes this limitation: Derivation of the Generalized Unidirectional
Pulse Propagation Equation (gUPPE) is sketched here for waveguiding structures
with z-invariant refractive index.

Consider a geometry given by a frequency-dependent relative permittivity which
only depends of the coordinates transverse to the direction of propagation. The latter
is taken to be the z-axis, and ε(r⊥, ω) will stand for the susceptibility at the angular
frequency ω, at the transverse location r⊥. The idea is to separate, without any
approximations, the effects related to the chromatic properties and the geometry of
the waveguide, and the nonlinear interaction of light with the materials that constitute
the structure.

The linear propagation regime is controlled by the linear operator L̂, closely related
to the Helmholtz equation. It reflects the geometry and material of the problem, and
acts on the transverse electric vector field as follows:

L̂E⊥ ≡
ω2

c2
ε(r⊥, ω)E⊥ +∆⊥E⊥ +∇1

ε
E⊥.∇⊥ε. (97)

All nonlinear interactions are included in the operator N̂ that acts on E⊥, and in
general also depends on the Ez component:

N̂ [E] ≡ ω2

ε0c2
P(E) +∇ 1

ε0ε
∇ ·P(E). (98)

Depending on the concrete form of the polarization model, the above expression may
depend of Ez. If it does, the longitudinal component of the electric field can be
obtained from the divergence equations. For simplicity, the nonlinear current density
is omitted as all is straightforward to generalize.

To construct the propagation equations for E⊥(z, x, y, ω), auxiliary field ampli-
tudes are introduced first, doubling the number of variables utilized to describe the
electric field:

Ei(z, x, y, ω) = E+
i (z, x, y, ω) + E−i (z, x, y, ω), (99)

where

E+
i = A+

i (z, x, y, ω)e+iζz

E−i = A−i (z, x, y, ω)e−iζz, (100)
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and i = x, y and ζ stands for a parameter to be chosen freely. Because no ζ appears
in Maxwell’s equations, no physical observables can depend on it. This “gauge in-
variance” becomes manifest in the final result. ζ is called a reference wavenumber to
indicate that it has no physical meaning by itself.

Next we need a projection operation that selects from an arbitrary pulsed wave-
form the portion that propagates in the positive (forward) z direction. Similar to

Ref. [9], two projector operators can be constructed from the Helmholtz operator L̂

and its square root L̂
1
2 :

PF ≡
L̂−

1
2

4ζ

(
+(ζ + L̂

1
2 )2 +(L̂− ζ2)

−(L̂− ζ2) −(ζ − L̂ 1
2 )2

)
PB ≡

L̂−
1
2

4ζ

(
−(ζ − L̂ 1

2 )2 −(L̂− ζ2)

+(L̂− ζ2) +(ζ + L̂
1
2 )2

)
(101)

It is straightforward to show that these operators have the usual properties of pro-
jectors,

P2
F = PF P2

B = PB , (102)

and
PF + PB = 1 , PFPB = PFPB = 0 . (103)

It can also be shown that eigenvectors of PF and PB have propagation constants
equal to those of the linear forward and backward propagating modes, respectively.
This means that these operators are the right pair to define the split into forward
and backward going waves in the linear regime. To do this, unidirectional amplitudes
are produced with PF,B such that they only exhibit evolution in the presence of
nonlinearity:

EF⊥ = e+i
√
L̂zAF⊥(z) , EB⊥ = e−i

√
L̂zAB⊥(z) . (104)

Note that AF,B⊥ (z) are analogous to the spectral, i.e. plane-wave, representation of
the electric field in bulk media. Their evolution equation is

∂zA
F
⊥ =

+i

2
√
L̂
e−i
√
L̂zN̂⊥[e+i

√
L̂zAF + e−i

√
L̂zAB ]

∂zA
B
⊥ =

−i

2
√
L̂
e+i
√
L̂zN̂⊥[e+i

√
L̂zAF + e−i

√
L̂zAB ]

(105)

This system shows that the coupling of the forward and backward propagating is
mediated by the nonlinear terms. This is the point at which the unidirectional ap-
proximation is invoked. Namely, it is assumed that the backward propagating fields
are negligible in the sense that they do not contribute to the nonlinearity. Under such
conditions, the nonlinear term reads

N̂⊥[e+i
√
L̂zAF + e−i

√
L̂zAB ] ≈ N̂⊥[e+i

√
L̂zAF ] , (106)

and the system is reduced to only the forward-propagating field:

∂zA
F
⊥(r⊥, ω, z) = +

i

2
√
L̂
e−i
√
L̂zN̂⊥[e+i

√
L̂zAF ]. (107)

This is the generalization of the Unidirectional Pulse Propagation Equation. It is
analogous to the bulk UPPEs of Eq. (214), with the linear and nonlinear effects
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cleanly separated into linear pulse propagator exp(iL̂1/2z), and nonlinear coupling
between linear modes.

As one should expect, the above propagation equation reduces to a full vector
version of UPPE for bulk media, showing that the latter is just a special case of
Eq.(107). One practically important property is that once an implementation for
the linear propagator is available, the numerical technique to solve gUPPE is nearly
identical to that described earlier for UPPE.

Since the linear propagator is diagonal in angular frequency, its numerical appli-
cation is equivalent to a set of independent beam-propagation problems. The action
of exp(iL̂1/2z)ψ only requires one independent BPM-like update for each ω resolved
in the simulation. Many wide-angle BPM methods available, and any of them can
be employed in gUPPE. However, the optimal choice depends on the geometry and
material properties in the given pulse-propagation problem.
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2.5 Medium response and nonlinear interactions

This section describes typical components of medium response models in nonlinear
optics of ultrashort pulses. They all can be viewed as contributions to the polarization
or to the induced current density, both of which appear in Maxwell’s equations or in
the wave equation as source terms.

2.5.1 Optical Kerr effect

We will use the optical Kerr effect as a prototypical example of nonlinear source
term that can be included in the polarization. At the dominant third order for a
centro-symmetric medium, the nonlinear polarization P reads :

P ≡ ε0χ(3)E3 (108)

By expressing the scalar components of the electric field as an envelope and a carrier:
E = 1

2 [E exp(ik0z − iω0t) + E∗ exp(−ik0z + iω0t)], we obtain an expression for E3:

E3 =
1

8
[E3 exp(i3k0z − i3ω0t) + 3|E|2E exp(ik0z − iω0t) + c.c.], (109)

where c.c. denotes complex conjugation. By introducing Eq. (109) into Eq. (108), we
identify the nonlinear polarization envelope P from its carrier envelope decomposition
P = 1

2 [P exp(ik0z − iω0t) + P∗ exp(−ik0z + iω0t)]:

P ≡ ε0χ(3) 3

4
|E|2E . (110)

It is readily seen that Equation (109) contains a component oscillating at the third
harmonic (3ω0) that has been discarded in the nonlinear polarization, as we only
identified the fundamental components oscillating at ω0 to derive the nonlinear po-
larization envelope (110). Thus, introduction of Eq. (110) in an envelope propagation
model describes the effects called self-focusing (for a positive χ(3)) and self-phase mod-
ulation but not third-harmonic generation. Next section will show how to describe
the latter effect either with an envelope or a carrier resolving propagation equation.

Up to now, we have written our models with hidden material coefficients such as,
e.g., the linear susceptibility χ(1)(ω) which is included in the dispersion relation k(ω)
of the medium, in turn involving specific resonance frequencies and amplitudes. For
practical situations, it is needed to supply numerical codes with parameter values for
the material coefficients. For the nonlinear third-order susceptibility, values may be
obtained from ab-initio calculations but measurements of the nonlinear index coeffi-
cient n2 ≡ 3χ(3)/4ε0cn

2
0 in units of m2/W may also be found in the literature. For

instance, see Refs. [25] for optical crystals. By introducing the above definition for
the nonlinear index coefficient n2 in Eq. (110), and by using the definition of the
intensity I ≡ ε0cn0|E|2/2, an expression is obtained for the nonlinear polarization en-
velope modeling an instantaneous Kerr response of the medium due to the electronic
contribution to the polarization:

P
ε0
≡ 2n0n2IE , (111)

where both the linear refraction index n0 and the nonlinear index n2I are dimension-
less, since I is expressed in W/m2 and n2 in m2/W. Eq.(111) can then be introduced
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into all nonlinear envelope propagation equations. Using for instance Eq. (51) to
describe the propagation of a monochromatic beam, which allows us to neglect dis-

persion (k
(2)
0 = 0), we obtain the NLS equation with its standard cubic nonlinearity:

∂E
∂z

=
i

2k0
∆⊥E + i

ω0

c
n2IE (112)

Equation (112) models beam propagation under the effects of diffraction and the opti-
cal Kerr effect, leading to beam self-focusing (for a positive n2), i.e. to the cumulative
lens effect bending the phase fronts due to the higher refraction index in the most
intense part of the beam. In a planar geometry, beam self-focusing and diffraction
alternatively prevail, resulting in beam width oscillations without energy losses [26].
In cylindrical geometry, it is known that Eq. (112) is mathematically singular: Beams
with power above a certain threshold Pcr undergo catastrophic collapse at a finite
distance [27]. For Gaussian beams, this critical threshold is given by:

Pcr =
3.77πn0

2k2
0n2

. (113)

For a collimated Gaussian beam E = E0 exp(−r2/w2
0) of power Pin ≡ πw2

0I0/2, where
I0 ≡ ε0cn0E2

0/2, the self-focusing (collapse) distance follows [27]:

zc =
0.367zR√

[(Pin/Pcr)1/2 − 0.852]2 − 0.0219
(114)

where zR ≡ k0w
2
0/2 denotes the Rayleigh (typical diffraction) length. Section 3.1.2

shows how to implement model (112) and Eqs. (113) and (114) provide analytical
scaling laws for the collapse distance and the critical power threshold that can be
used as test cases to check the correct implementation of the model.

2.5.2 Optical Kerr effect and third harmonic generation

Closely related to the optical Kerr effect caused by electrons in bound states is third
harmonic generation which is often observed in femtosecond filaments. In fact, from
a certain point of view the two effects are actually one.

Consider an instantaneous (electronic) Kerr effect in an isotropic medium. Also
consider a propagation model which simulates directly the physical field rather than
its envelope. A polarization response that is third-order in the electric field E must
be constructed solely from E taken at the given instant in time, so there is a single
vector to work with. That is why, the only possible form of an instantaneous third-
order nonlinearity is as given in Eq. (108).

Note that as soon as there is memory, two frequency dependent components of
third-order susceptibility tensor are needed for full description. The important point
is that the frequency content of Eq. (108) consists of both the fundamental frequency
of E and of its third harmonic. This is the main source of third harmonic radiation
observed in femtosecond filaments (although it is not the only one).

It is worthwhile to remark that Readers will find in the literature also a very differ-
ent approach to modeling third-harmonic generation. In works and simulations based
on application of envelope pulse propagation equations, several authors used two en-
velope functions, one for the fundamental frequency and one for the third harmonic
generation [30]. The electric field decomposition into carriers and envelopes with these
two components reads: E = 1

2 [Eω0
exp(ikω0

z− iω0t) +E3ω0
exp(ik3ω0

z− i3ω0t) + c.c.],
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and the nonlinear polarization can be decomposed similarly. Introduction of this de-
composition into Eq. (108) yields expressions for the fundamental and third harmonic
envelope components of the nonlinear polarization:

Pω0 = ε0χ
(3) 3

4
[(|Eω0 |2 + 2|E3ω0 |2)Eω0 + E∗2ω0

E3ω0 ], (115)

P3ω0 = ε0χ
(3) 3

4
[(|E3ω0 |2 + 2|Eω0 |2)E3ω0 + E3

ω0
/3]. (116)

For each component Pω0 and P3ω0 , the first two terms represent self- and cross- phase
modulation. The third terms are responsible for energy exchange between fundamen-
tal and third harmonics fields, namely third harmonic generation and back conversion.
Envelope propagation equation for each component Eω0

and E3ω0
are derived following

the methods presented in section 2.2 and follow the canonical form valid for envelopes
with broad spectra.

It has to be emphasized that the two-envelope method can only be justified as
long as spectral components centered around the fundamental and third harmonic
frequency are well separated. However, spectra can become extremely broad in fem-
tosecond filamentation. Then, distinction between fundamental and third harmonic
is impossible, and any two-envelope parametrization is therefore non-unique leading
to a fundamentally inconsistent model. Thus, if harmonic frequencies are expected to
appear in the numerical experiment and if the spectrum for the fundamental compo-
nent broadens sufficiently to overlap the third harmonic spectrum, a carrier resolving
model implementing the optical Kerr effect as in (108) should be used. This will nat-
urally capture also generation of other odd harmonics in a cascade process which may
become important for longer-wavelength filamentation.

2.5.3 Nonlinear absorption

The NLS Equation (112) leads to optical beam collapse in cylindrical geometry but in
a real experiment, saturation mechanisms prevent collapse to occur [29]. This means
that the mathematical singularity of Eq. (112) must be cured by extending the model
to a more realistic case. Close to the collapse, the beam intensity is sufficient to
ionize the medium after absorption of several photons. The process is associated with
nonlinear absorption of energy, which is the main physical effect playing a saturation
role in preventing the collapse to occur7.

Nonlinear absorption is described by an effective current J such that the aver-
aged dissipated power corresponds to that necessary for optical field ionization of the
medium with density of neutral atoms ρnt, ionization potential (or gap for a solid
medium) Ui and intensity-dependent ionization rate W (I) [32]. Different ionization
regimes exist and correspond to different ionization rates. For example for intensities
smaller than a certain threshold, ionization occurs in the multiphoton regime and re-
quires absorption of several (K) photons to liberate an electron. In this text, without
loss of generality, we will consider only the multiphoton regime for which a simple
law for ionization rates reads W (I) = σKIK , where σK denotes the cross section for
multiphoton ionization. The above condition for power dissipation is expressed as

1

2
J ·E∗ = W (I)K~ω0ρnt (117)

7 Note that plasma induced defocusing can also prevent collapse to occur, however, non-
linear absorption of energy is necessary to prevent subsequent catastrophic behavior [31]
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The current is therefore obtained as

J

ε0c
= n0

W (I)K~ω0ρnt
I

E, (118)

and its envelope counterpart, in the multiphoton regime, reads as

J
ε0c

= n0βKIK−1E . (119)

where βK ≡ K~ω0σKρnt denotes the cross section for multiphoton absorption.
By introducing Eq. (119) into the nonlinear envelope equations derived in section

2.2, the effect of multiphoton absorption is accounted for in propagation models. For
instance, with the change P → P+iJ /ω0 the NLS Equation (51) for a monochromatic
beam undergoing diffraction, optical Kerr effect and multiphoton absorption becomes:

∂E
∂z

=
i

2k0
∆⊥E + i

ω0

c
n2IE −

βK
2
IK−1E (120)

Equation (120) is an extended NLS equation that is also valid to describe the propa-
gation of pulses provided they keep a narrow spectrum during their nonlinear prop-
agation.

An evolution equation for the pulse intensity is obtained by multiplying Equa-
tion (120) by E∗ and by adding the result to its complex conjugate:

∂|E|2

∂z
=

i

2k0
[E∗∆⊥E − E∆⊥E∗]− βKIK−1|E|2 (121)

Note that the Kerr term is no longer present in Eq. (121), reflecting the fact that
the optical Kerr effect does not directly modify the laser beam intensity but leads
to nonlinear phase accumulation. Spatial phase gradients mediated by the first term
on the r.h.s. of Eq. (121) then lead to an energy flux toward the beam center, which
is responsible for an increase of the beam intensity. For a very large beam, the term
[E∗∆⊥E −E∆⊥E∗] can be neglected in the central part of the beam8, the intensity of
which is governed by:

∂I
∂z

= −βKIK , (122)

An analytical solution of Eq. (122) reads

I(z) =
I0

(1 + (K − 1)βKIK−1
0 z)1/(K−1)

(123)

Tests of the numerical implementation of nonlinear energy losses can be easily made
by comparison of simulation results with their analytical counterpart from Equa-
tion (123).

2.5.4 Plasma generation and plasma defocusing

When the pulse is so intense that it ionizes the medium, the contribution of the
plasma follows from the evolution equation for the plasma current density:

∂J

∂t
+

J

τc
=

q2
e

me
ρE, (124)

8 By denoting φ the phase of the beam, a straightforward calculation shows that [E∗∆⊥E−
E∆⊥E∗] = 2i∇⊥ · (|E|2∇⊥φ). For a large beam, this term is small close to the beam center
where the phase is flat.
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where ρ denotes the electron density and τc is the electron collision time. Equa-
tion (124) can be solved in the Fourier domain and its solution introduced in prop-

agation equations with a source term (ω/c)(Ĵ/ε0c) involving spectral components of
the free charge current. From Eq. (124), we obtain:

ω

c

Ĵ

ε0c
=

q2
eωτc

ε0c2me

1 + iωτc
1 + ω2τ2

c

ρ̂E. (125)

We rewrite Eq. (125) as:

ω

c

Ĵ

ε0c
= k(ω)σ(ω)ρ̂E, (126)

where

σ(ω) =
ω0

n(ω)cρc

ω0τc(1 + iωτc)

(1 + ω2τ2
c )

(127)

is a complex frequency-dependent coefficient with real part equal to the cross section
for inverse Bremsstrahlung [33] and ρc ≡ ε0meω

2
0/q

2
e , the critical plasma density

above which the plasma becomes opaque to the laser beam at frequency ω0. This is
known as the Drude model. Note that σ(ω) is not effectively depending on the central
frequency of the laser pulse ω0 since the quantity ω2

0/ρc in Eq. (127) is a constant,
the critical density being only a reference chosen for the pulse central frequency ω0.

The current in Equation (126) accounts for plasma absorption (real part) and
plasma defocusing (imaginary part). Both effects are frequency dependent, for ex-
ample defocusing is stronger for longer wavelengths. It can be important that our
models capture such dispersive behavior, for example in pump probe experiments
with different pulse wavelengths.

To close the model, one needs to know the evolution of the electron density ρ(r, t)
entering in Eq. (126). It is is governed by a rate equation in the form:

∂ρ

∂t
= Wofi(I)(ρnt − ρ) +Wava(I)ρ (128)

where the first term on the r.h.s. of Eq. (128) represents optical field ionization and
the second term represents avalanche ionization. As stated in section 2.5.3, optical
field ionization in the multiphoton regime occurs with a rate Wofi(I) = σKIK . The
rate for avalanche ionization can be considered as proportional to the pulse intensity
Wava(I) = σ(ω0)I/Ui, where σ(ω0) is the inverse Bremsstrahlung coefficient given by
Eq. (127) evaluated at the central frequency ω0 of the laser pulse and Ui the ionization
potential.

An example of nonlinear envelope equation with nonlinear terms accounting for
the optical Kerr effect, nonlinear absorption and plasma effects is obtained by intro-
ducing the corresponding source terms in the FEE (38):

∂Ê
∂z

=
i

2k(ω)
∆⊥Ê + i[k(ω)− κ(ω)]Ê + i

ω

c

n0

n(ω)
n2ÎE −

βK
2
ÎK−1E − σ(ω)

2
ρ̂E (129)

2.5.5 Raman-Kerr effect

The optical Kerr effect includes in general the electronic contribution which is nearly
instantaneous and a delayed component of fraction α, due to stimulated molecular
Raman scattering.

Air is by a large part made of two-atomic molecules with different polarizabilities
parallel and perpendicular to their symmetry axes. This leads to a nonlinear effect
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which is referred to as stimulated Raman effect, although the recent nomenclature
acknowledges the fact that dynamic reorientation of molecules plays a central role in
it.

The interaction energy of a molecule in an external field is such that it prefers to
align with the direction of the field. When a femtosecond pulse hits such a molecule,
it excites rotational motion; this is a stimulated Raman effect. Molecular rotation
then changes the effective linear polarizability of the molecule as projected on the
direction of the field. Because the interaction Hamiltonian is quadratic in field, the
effect is of third-order. It is therefore often considered a companion of the electronic
Raman effect. Taken a very different microscopic origins, this may seem arbitrary,
but one has to keep in mind that manifestations of the two effects (i.e. self-focusing)
are very difficult to distinguish in longer pulses.

A proper, first-principles model would need to integrate quantum mechanical equa-
tions of motion for a density matrix describing the rotational state of an ensemble of
molecules. Note that such a system is to be solved at each spatial grid location, and
at each propagation step! Instead of this (relatively) difficult calculation, the Raman
effect is approximately parametrized as described next.

Let us denote Qi a generalized coordinate of an effective oscillator embedded in
the medium which responds to a force that is quadratic in external field,

∂2Qi
∂t2

+ 2Γ
∂Qi
∂t

+ (ω2
R + Γ 2)Qi = (ω2

R + Γ 2)|E(r, t, z)|2, (130)

for Qi with boundary conditions ∂Qi/∂t(−∞) = 0 and Qi(−∞) = 0. The solution to
Eq. (130) reads:

Qi(r, t, z) =

∫ t

−∞
R0 exp[−Γ (t− τ)] sin[ωR(t− τ)]|E(r, τ, z)|2dτ, (131)

where R0 = (Γ 2 + ω2
R)/ωR.

The nonlinear polarization for the Kerr term with its Raman contribution there-
fore reads as

P
ε0

= 2n0n2

(
(1− α)I(r, t, z) + α

∫ t

−∞
R(t− τ)I(r, τ, z) dτ

)
E , (132)

where I = ε0cn0|E(r, t, z)|2/2. The function R(t) mimics the molecular response with
a characteristic time Γ−1 and frequency ωR:

R(t) = R0 exp(−Γt) sinωRt (133)

One advantage of the above phenomenological approach is that it can be ap-
plied also to other types of stimulated Raman scattering. For example in glasses, this
single-oscillator model can serve as an acceptable approximation of what is actually a
significantly more complex process. It can also be generalized to include multiple effec-
tive oscillators, which in turn can mimic the true medium response quite accurately.
In water, the single-oscillator model could accurately reproduce measured signatures
of stimulated Raman scattering in angularly resolved spectra [34,35]. We will discuss
efficient numerical implementation of this and similar models in Section 3.3.
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2.6 Light-matter interaction model extensions

The model for light-matter interaction described in the previous section consists of
more or less independent components that were conceived when typical laser pulses
were longer, and less powerful. It is thus not too surprising that recently it becomes
obvious that its useful lifetime is limited. The following are just few of the conceptual
problems in the current approach:

• electronic states are considered either bound or completely free
• weakly bound and free, but correlated electronic states are neglected
• ionization is modeled as a rate, and as such neglects the history of the system

subject to the time-dependent external field
• the ionization model has no natural extension to multicolor, broad-bandwidth

excitation pulses
• there is no refractive interaction that is causally coupled to the ionization
• the ionization-related energy losses are accounted for through a purely phenomeno-

logical current arbitrarily added to the propagation equation
• Kerr-related and plasma-related components of the model are independent, thus

not reflecting the fact that these effects have a common origin and are therefore
intimately related

The phenomenological nature of the “standard” light-matter interaction model
used in pulse propagation studies of femtosecond filamentation and also in high-
harmonic generation modeling has been recently recognized. Efforts aimed at quali-
tative improvement are underway in several groups and it is to be expected that a
lot of work will be devoted to these issues in the near future. One possible approach
is to couple TDSE simulations directly to pulse propagation solvers (see [57] for one
of the first works), and apply massive computing power. Such truly first principle
approaches have been pursued e.g. by the Bandrauk‘s group [58–60]. However, so far
direct attacks are rather restricted in their applicability due to the extreme computa-
tional resources they require even for relatively “small” modeling problems. Research
will therefore continue to explore other approaches which acknowledge that all the
effects that comprise the standard model originate from a complex electronic system
response.

The goal of the following section is to review the various options from this view-
point. Because of the enormous breadth of the light-matter interaction field, these
notes only concentrate on those models and theories that have been, at least in some
form, designed to study spatially resolved pulse propagation simulation coupled to
first-principle light-matter interactions.

2.6.1 Quintic nonlinearity and Kerr effect saturation

While the collapse arrest by the combined effect of multi-photon ionization losses and
de-focusing by freed electrons have been considered to be the two most important
mechanisms, researchers have been looking for alternatives, too. It is fair to say that
in the early years of the filamentation research and modeling, part of the motiva-
tion also came from the difficulties related to numerical resolution of the often violent
arrest of the self-focusing collapse. It was quite natural to ask if the numerical difficul-
ties indicated that additional mechanisms also contributed to the collapse-arresting
processes.

For applications to filaments, the fifth-order susceptibility was often considered
in conjunction with plasma effects as a way to soften the collapse, and modify the
intensities occurring in the filament cores [61,62,29,63]. The argument is based on the
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relative comparison of nonlinear effect of different orders. In the perturbative regime,
it is expected that the ratio of the higher-order nonlinear polarization orders scales
as [64]

P (k+2)

P (k)
≈ |E|2

|Eatomic|2
.

With the atomic field strength of Eatomic ≈ 1010Vm−1, the higher-order nonlinearity
contribution is expected to be small. Nevertheless, filamentation can not be viewed as
a strictly perturbative regime despite the fact that the intensities involved are still a
couple of orders of magnitude lower than atomic fields; In fact, optical filamentation
is a regime on the boundary between perturbative and strong-fields. It is thus not
unreasonable to expect that, for example, quintic nonlinearity could saturate the
Kerr-induced self-focusing (see e.g. [67,66,65]).

2.6.2 Higher-order Kerr nonlinearity

In 2009, Loriot and co-authors performed a pump-probe experiment [68] in which a
probe beam polarized at 45 degrees with respect to the strong pump pulse polariza-
tion direction detected a time-resolved birefringence induced by the interaction within
the femtosecond pulse. Authors interpreted their findings as evidence for the instanta-
neous, Kerr-type nonlinearity of a very high order. In particular, it was proposed that
already for light intensities that are readily available in femtosecond optical filaments,
the usual Kerr effect alone is insufficient to describe the nonlinear response due to
bound electrons, and must be replaced by the so-called higher-order Kerr effect (later
termed HOKE) for which the intensity dependent nonlinear index becomes a highly
nonlinear function of instantaneous light intensity:

∆n(I) = n2I + n4I
2 + n6I

3 + n8I
4 + n10I

5 (134)

An important feature of this nonlinear modification of refractive index was that it not
only saturates, but turns negative with a steep slope at a cross-over intensity which
depends on the gas species. Not long after the original experiment, this particular
feature was invoked to question the filamentation paradigm that had been accepted
for more than a decade, and it was suggested that plasma was not necessary as
an effect crucial for the self-focusing collapse arrest. The debate that followed (see
e.g. [69,70,73,74,71,72,79,75,76,78,80–87,77,88]) has not been completely settled
at time of this writing, and it is not our goal to add to the particular discussion.
Rather, we concentrate on the numerical modeling issues related to this higher-order
nonlinearity and the consequences that the potential acceptance of this kind of model
implies.

From the numerical implementation point of view the HOKE model does not
require anything special beyond a simple replacement of the nonlinear index coefficient
already present in the standard filamentation model with the prescription shown
above. This is indeed how the modification was implemented in various simulation
tests of the theory. However, physical questions concerning the precise meaning of the
higher-order nonlinear index immediately arise. If the cycle averaged intensity is used
to calculate ∆n(I), the resulting nonlinear polarization does not contain any higher-
order harmonics, including the third and fifth, both of which have been experimentally
observed numerous times in femtosecond filaments. This is a drawback that must be
dealt with by adding a dedicated nonlinear term that generates the third and fifth
harmonic. Alternatively, assuming truly instantaneous response, one could replace I
in ∆n(I) with:

∆P (t) ≈ ∆n(E2)E =
[
ñ2(E2) + ñ4(E2)2 + ñ6(E2)3 + ñ8(E2)4 + ñ10(E2)5

]
E(t)

(135)
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The above expression would be in line with the conclusion of the original experiment
that the new effect was instantaneous. However, it would automatically generate
harmonics of up to order eleven, and this would happen directly, without the need
of a cascaded process that is normally responsible for the appearance of the fifth
harmonic from the third harmonic radiation. Clearly, neither of the two possible
formulations feels very satisfactory.

It thus becomes obvious that if the HOKE effect is indeed operational in some
femtosecond filamentation regimes, its modeling will require more accurate specifica-
tion of its memory or delay time, and how it can be accounted for in the numerical
model.

2.6.3 Molecular reorientation in strong fields

As a laser pulse propagates through a molecular gas medium, it causes the molecules
to rotate and align, at least partially, with the electric field. The origin of this effect is
in the different polarizibility of an asymmetric molecule; it is larger along the molecule
axis (say, in an O2 or N2) than in directions perpendicular to it. A simple picture
involves a model of such a molecule in the form of a rigid rotor. The polarizibility
of the medium is then given by an ensemble average of molecular contributions. The
latter can be written as

P = α⊥E +∆αn(n.E)

where n is a unit vector along the molecule axis. To account for the chaotic, or
partially ordered orientation of molecules in the gaseous ensemble, one can write the
resulting polarization response as a function of the mean orientation angle θ between
the molecular axis and polarization direction of the field:

P = (α⊥ +∆α cos2 θ)E

The resulting polarization direction aligns with that of the electric field as the perpen-
dicular contributions cancel out. Of course, the average value of the above expression
is normally included in the linear chromatic dispersion of the model gas. The devia-
tion is the polarization due to increased order in molecular orientation. The effective
susceptibility arising from such a partial order is

χrot = ρN∆α[< cos2 θ > −1/3] ,

where the fraction 1/3 stands for the equilibrium value of the alignment factor. The
alignment is dynamic and therefore in general different for different species con-
stituents of the gas. Different species contributions are additive, but in general exhibit
alignment revivals at different times after impulsive excitation.

The basic task in modeling the interaction with femto-second pulses on the micro-
scopic level consists in evaluation of the mean alignment factor. At the first principle
level, this is a quantum-mechanical problem which requires significant numerical ef-
fort. The method of calculation is nicely summarized in Ref. [89], and we sketch the
main points next.

The evolution of the density matrix describing the state of a rotating molecule
reads

d

dt
ρIJ = −iωIJρIJ +

i

~
∑
K

(ρIKVKJ − VIKρKJ) (136)

Here, I = (i,m) and other double indices denote the total and projected angular
momentum quantum numbers, and the eigenfrequencies are

ωIJ =
B

~
[i(i+ 1)− j(j + 1)]− D

~
[i2(i+ 1)2 − j2(j + 1)2] (137)
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with D,B rotational constants characterizing the molecule. The interaction matrix
element VIJ between the molecule and the external electric field includes the induced
dipole moment

VIJ = − < I|1
2
E.ᾱ.E|J > (138)

For an axially symmetric molecule this interaction can be expressed in terms of the
alignment factor as follows:

VIJ = −1

4
E2

0(α⊥δIJ +∆α < I| cos2 θ|J >) (139)

where θ is the angle between the molecular and z axes. Having solved for the density
matrix elements, the physical observable measuring the degree of molecular alignment
is ∑

IJ

ρIJ < I| cos2 θ|J > (140)

This is evaluated as a function of time for a given driving electric field E(t). The
solution provides a first-principle based input for the effective susceptibility of the
molecular gas exposed to a strong lase pulse. However, computational requirements
of the full density-matrix method are too large for effective integration with the
pulse propagation simulation. This is because at every point in space the quantum
mechanical problem complexity scales with the fourth power of the maximal rota-
tional quantum number excited. The latter can be quite high if excitation is due to
broadband laser pulses. Fortunately, the dynamics of the alignment can be quite ac-
curately described by semi-classical means, which turn out to work especially well for
short-duration pulses. Ref [90] derives a Green’s function method and gives analytic
expressions for the memory function that determines the response to a general time-
dependent field in the second-order approximation in its intensity. Application in the
context of ultrashort laser pulses is described in detail in [91].

In general, the response due to molecular alignment can be cast in the convolution
form

< cos2 θ >=

∫ t

−∞
G(t− τ)|E(τ)|2dτ (141)

where the Green’s, or memory function represents the response to an impulse exci-
tation. Note that this theory neglects higher-order nonlinear effects in the laser-field
amplitude. Several models for G have been presented, with various degrees of compu-
tational complexity (that in general increases for models with least approximations).

For molecules treated as classical rotors the Green’s function is obtained as

G(x) =
∆α

15kTM

[
x+

1

2
π1/2(1− 2x2)e−x

2

erfi(x)

]
(142)

where x = kT τ , kT = c−1(2T/M)1/2 with M the moment of inertia, and T standing
for the temperature (in energy units). This approach requires convolution evaluation,
and can be further simplified by fitting the memory function by a combined response of
effective oscillators. The suitable parametrization for oxygen and nitrogen is provided
in [91].

One physical limitation of the above method is that the response calculation must
be restricted to times shorter than a few hundred femtosecond after the initial laser
pulse. At later times, the discreteness of the quantum mechanical rotor spectrum can
not be ignored, and manifests itself in the well-known revivals of molecular alignment.
This effect is not captured here, but the model can be generalized for situations in
which probe pulses explore the excitation left in the wake of a pump laser pulse by
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means of delayed-excitation of effective oscillators. The oscillator equation is driven
by a delayed force originating in the first laser pulse:[

d2

dx2
± 2γ

d

dx
+ ω2

]
χ(x) = ± 1

2π
ω2n̄2I0|E1(x− τ0)|2 (143)

The delay τ0 in the forcing term correspond to the molecular revival time of the given
molecular species. This equation generates the susceptibility experienced by the sec-
ond, probe pulse. Of course, the direct interaction of the probe with the molecular
ensemble must still be included if the probe is sufficiently intense. Overall this ap-
proach provides a viable alternative to the full quantum mechanical approach at a
computational expense that is reasonable for practical simulations.

2.6.4 Semi-analytic quantum model for strong-field ionization

One particularly interesting family of exactly solvable models is constructed by re-
placing the atomic potential function with a separable interaction. Such systems have
been often used especially in nuclear physics (pioneered by Yamaguchi [92]). It was
also shown that non-local separable potentials may be used to study bound states of
particles in multicenter potentials [93], and hydrogenic states in quantum dots [94].
For the specific context of light-matter interaction, Refs. [95,97,96] show details and
many explicit expressions that can be obtained for these exactly solvable models. The
time-dependent Schrödinger equation is written in the momentum representation as

[
i∂t − p2/2−A(t).p

]
Ψ(p, t)−

∫
dk

(2π)3
V (p,k)Ψ(k, t) = 0 , V (p,k) = −

N∑
n

vn(p)vn(k)∗

(144)
where the term on the right shows the general structure of a separable potential
consisting of N components. For example, V (p,k) = −16π/(p2+1)(k2+1) results in a
system that has a single bound state identical to the ground state ψg(p) = 8

√
π/(p2 +

1)2 of the hydrogen atom. More functions v(p) can be chosen as to reproduce several
of the exact bound states [97]. Naturally besides the discrete spectrum, all these
systems exhibit a three-dimensional energetic continuum of “free” states.

The general form of the wavefunction is Ψ = ΨF + ΨS , with a free-propagating
and “scattering” terms. For a system with single bound state, the solution can be
written explicitly as follows:

Ψ(p, t) = KV (t,p)Ψ(p, 0) +
16iπ

(p2 + 1)

∫ t

0

KV (p, τ, xcl(τ))A(τ)dτ (145)

with
KV (p, t, x) = exp [−ip2t/2− pzx] (146)

and A(τ) satisfies the integral equation

A(t) = A0(t) +

∫ t

0

W (t, s)A(s)ds (147)

with the right hand side A0

A0(t) =

∫
dp

(2π)3

Ψ(p, 0)

p2 + 1
KV (p, t, xcl(t)) , (148)
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and the kernel

W (t, s) = 16iπ

∫
dp

(2π)3

1

(p2 + 1)2
KV (p, t− s, xcl(t)− xcl(s)) (149)

As shown in [97], these expressions can be evaluated analytically. Similar calculations
are possible for systems with multiple bound states [97].

Important for the application in pulse propagation simulations is that the ioniza-
tion probability can be exactly evaluated for an arbitrary time-dependent excitation
field, once the solution to the integral equation is known. The total ionization yield

P (t) = 1− |c0(t)|2 , c0(t) =< ψg|ψ(t) > (150)

is obtained from the projection of the total wavefunction onto the ground-state. The
distinct advantage is that the calculation circumvents the need for explicit wave-
function calculation.

The method based on separable potentials can, naturally, yield also the energetic
spectrum of ionized electrons. Such results could serve as suitable input data for
treatment of plasma-equilibration effects [99,98].

2.6.5 Integrated Maxwell-Schrödinger systems

Lorin an co-authors recently presented an ab-initio approach to Maxwell-Schrödinger
integration for simulation of filamentation with intense ultrashort pulses propagating
in a molecular gas [58–60]. The electromagnetic field of the laser pulse is modeled
using Maxwells equations coupled with many time-dependent quantum Schrödinger
systems modeling the molecular gas. The nonlinear response of model atoms thus
contributes an ab initio description of the light-matter interaction. This is termed
Maxwell-Schrödinger-Plasma, or MASP, model. It allows one to unify the description
high harmonic generation with the nonlinear effects that govern the driving pulse
propagation, namely self-focusing and de-defocusing nonlinearities. The high intensi-
ties cause the gas to become partially ionized and create a free electron plasma which
also affects the pulse defocusing and losses.

It is fair to say that at time of this writing these works represent the most sophis-
ticated first-principle based pulse propagation simulation coupled to the quantum-
mechanical description of light-medium interaction. There are several interesting in-
gredients in this work worth of mention in some detail.

Let us start with the treatment of plasma, or free electron contribution and its ef-
fect on laser pulse propagation. A major difficulty in application of TDSE simulation
to pulse propagation problems, but also in general, is that at high enough intensities
the free part of the electronic wavefunction spreads rapidly, and before long it reaches
the boundary of the computational domain. In order to circumvent this issue authors
of Ref. [59] decided to add an evolution equation for free electrons, allowing one to
model the current density which is included in the Maxwell equations [60]. To this
end, absorbing boundary conditions are implemented in the TDSE simulation, result-
ing in a decreasing norm of the simulated electronic wavefunction. If one can assume
that that the portion of the wave-function that has been annihilated at the compu-
tational box boundary is such that it would in future never interact with the parent
atom again, the corresponding “leaking” probability density can be reinterpreted as
representing free electrons. These free electrons are subsequently modeled as usual,
along the lines of the standard filamentation model described in the previous sections.
The surviving part of the electronic wavefunction continues to contribute to both self-
focusing and de-focusing nonlinearity and thus affects the laser pulse propagation. For
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this approximation to be consistent, the absorbing boundary must be sufficiently far
from the atom or molecule being ionized, otherwise one could not neglect later inter-
action with the ionic potential. This means that the effective ionization is delayed,
and that also the core wavefunction partially exhibits free electron properties. This
approach therefore can be viewed as an alternative definition of what free and bound
electronic states are. It also serves as an effective way to decrease computational
requirements of the simulation.

The electromagnetic portion of the simulated system is based on Maxwell equa-
tions, with polarization and current density terms sourcing the interaction with the
quantum medium of model atoms. In [60], the latter represent 1D one-electron H+

2
molecules, and one quantum system is assigned to each macroscopic sub-domain in
which the polarization is calculated. The one-dimensional TDSE is solved with the
Crank-Nicolson scheme, while 3-D Maxwell equations are computed with a modi-
fied Yee scheme. Clearly, this represent a truly large scale computation and requires
parallelization and significant hardware resources.

The method was illustrated for laser pulses with five to six cycles at a 800 nm
wavelength with typical pulse duration of 150 fs. The total propagation length of
the computational domain was up to 0.05 mm with the transverse cross section of
the domain of one hundred square microns. The Maxwell-Schrödinger-Plasma system
captures the basic physical ingredients that govern femtosecond filaments: As the
intensity increases, longer filament forms, kept together by self-focusing action of
the quantum system exposed to the optical field of the pulse. At the same time,
freed electron effect show up as the intensity of the pulse remains clamped. Although
these calculations assumed what is a rather small interaction zone in the context
of optical filamentation, they have demonstrated all necessary physical effects that
govern filaments, here unified into a single self-consistent and first-principle based
description of light-matter interaction.

2.6.6 An exactly solvable model for intense light-matter interaction

Ionization in strong fields
Tolstikhin, Morishita, and Watanabe considered a one-dimensional zero-range-

potential model [100], and developed an adiabatic theory of ionization by an intense
laser pulse. The results are discussed here as a model suitable for large-scale simu-
lations with spatial resolution. The system is perhaps the simplest possible one that
has both the discrete and continuous energy spectrum. These are indeed the minimal
necessary ingredients to model interactions that characterize femtosecond filaments
with the light intensities that drive the atom or a molecule in the “no-mans-land”
regime in which neither bound and/or free electronic states dominate, and both con-
tribute to the rich dynamics. Simple models that allows for detailed analysis are
precious tools in this context. The one-dimensional system studied by Tolstikhin et
al. [100] has a single bound state realized by a short-range, or contact potential in
the form of Dirac delta function, and it is exposed to an external electric field F (t)
with an arbitrary time dependence. The time-dependent Schrödinger equation can be
symbolically written as[

i∂t +
1

2
∂2
x +Bδ(x)− xF (t)

]
ψ(x, t) = 0 . (151)

The theory is developed for a small dimensionless parameter ε = 1/(B2T0) where
T0 stands for characteristic time-scale of the external field. Authors construct an
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asymptotic solution for ε → 0 and calculate the photo-ionization probability and
freed-electron momentum spectra. Such results can be in principle combined with the
pulse propagation solvers, and serve as a first-principle based source of freed electrons.

It has to be noted that this particular model has been studied in many other
contexts, and utilized as a testbed for various physical systems. Recently, the exact
solvability of this system was utilized to gain insight into possible manifestation of
higher-order nonlinearity in strong optical fields [101]. The same authors also show
that an exact solution for the complete nonlinear response can be obtained for an
arbitrary time dependent external field [102]. That solution provides a useful tool for
simulations of laser pulse interactions with atomic gases — it is described next.

Nonlinear response for arbitrary time-dependent field
The structure of the exact solution is quite similar to one that occurs in the exactly

solvable system with separable interaction discussed earlier [95,97]. Namely, the wave
function consists of the free-propagating and re-scattered components:

ψ(x, t) = ψF (x, t) + ψS(x, t) (152)

ψF (x, t) =
∫
dx′KF (x, t|x′, 0)ψG(x′) (153)

ψS(x, t) = iB
∫ t

0
dt′KF (x, t|0, t′)ψ(0, t′) (154)

ψG(x) = B1/2e−B|x| . (155)

where the central quantity is the Volkov propagator that describes the system’s evo-
lution in an arbitrary time dependent field, but in absence of the atomic potential:

KF (x, t|x′, t′) = eiφ(x,t,x′,t′)K0(x−xcl(t), t|x′−xcl(t′), t′) (156)

K0(x, t|x′, t′) = 1√
2πi(t−t′)

e
− (x−x′)2

2i(t−t′) (157)

φ(x, t, x′, t′) = xpcl(t)− x′pcl(t′)− [Scl(t)− Scl(t′)] (158)

here, the quantities pcl(t), xcl(t), Scl(t) denote the classical particle momentum, posi-
tion and kinetic energy as imposed by the external field.

To integrate this system with a laser pulse simulator, the solution for either nonlin-
ear polarization or current density is desired, and both can be obtained in semi-closed
forms. The current density, for example, reads

J(x, t) =
∑

i,j=S,F

Jij = Im {ψ∗F∇ψF + ψ∗F∇ψS + ψ∗S∇ψF + ψ∗S∇ψS} (159)

where the nonlinear components of the four contributions are

J
(nl)
SS = 2Im{

∫ t
0
dt1
∫ t1

0
dt2

(−i)
3
2B3W (t1,t2)√

2π
×[

e
i[xcl(t1)−xcl(t2)]2

2(t1−t2) A∗(t1)A(t2)− 1

]
xcl(t1)−xcl(t2)

t1−t2 }

JFS = Im{iB3
∫ t

0
dt1A

∗(t1)[e+Bxcl(t1)erfc
(

(1+i)(Bt1−ixcl(t1))

2
√
t1

)
−

e−Bxcl(t1)erfc
(

(1+i)(Bt1+ixcl(t1))

2
√
t1

)
]}

J
(nl)
FS = JFS − Im

{
2B3

∫ t

0

dt1xcl(t1)

(
iB erfc

(
(1+i)B

√
t1

2

)
− 1 + i√

πt1
e−i

B2

2 t1

)}
(160)
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and are expressed in terms of a central quantity A(t) which solves the following
integral equation

A(t) = ψR(−xcl(t), t)+
iB√
2πi

∫ t

0

dt′
e+iB

2

2 (t′−t)
√
t− t′

exp

[
i(xcl(t)− xcl(t′))2

2(t− t′)

]
A(t′) (161)

with the first term on the right-hand-side being the free-propagated initial condition

ψR(x, t) ≡ e+Bx

2
erfc

(
iBt+ x√

2it

)
+
e−Bx

2
erfc

(
iBt− x√

2it

)
. (162)

A numerical algorithm with a complexity that scales with the square of the number
of sampling points on the temporal axis is described in detail in ref. [102]. The numer-
ical evaluation for the driving wave-forms F (t) typical of femtosecond filamentation
and/or harmonic generation in hollow waveguides is sufficiently efficient to allow fully
spatially resolved experiment modeling — an illustration is shown next.

The above described model has been used for investigations into the dynamics
of light-matter interaction in various regimes. Despite the simplicity if the model
quantum system, it serves as a useful laboratory and a tool to understand the physics
in highly dynamic regimes that do not lend themselves to easy intuitive insights. The
most important advantage of the above solution is that it unifies several aspects that
have been so far modeled as different and independent facets of the standard light-
matter interaction model; The exact nonlinear response of this system, when exposed
to a few-cycle infrared wavelength laser pulse exhibits the self-focusing Kerr effect,
third-harmonic generation, high-harmonic generation, resonant state excitation, and
freed-electron induced current, all in a single quantity, the polarization or current,
that serves as a source in the Maxwell equations.

2.7 High-harmonic generation and propagation effects

Propagation effects are in general of great importance in modeling high-harmonic
generation. This is easy to understand intuitively, once we look at the polarization
response of the medium that enters Maxwell equations, and realize how broad the
frequency bandwidth is, and how large is the dynamic range of the spectrum. It is
the propagation mechanisms that select [103] which components of the polarization
response spectrum that will actually be converted into radiation. Because of com-
plex phase-matching issues, the spectrum of high-harmonic radiation in general only
represents a “subset” of the spectral content found in the induced dipole moment
spectrum we describe next. For detailed computing and modeling aspects of the fol-
lowing section, a very nice overview is given in Ref. [103] by Gaarde and co-authors.

The usual scheme utilized in a comprehensive HHG model is based on separation
between the driver pulse field and the high-harmonic radiation generated by the
former. Moreover, while the former is in general strongly affected by the underlying
nonlinearities, the latter can be safely considered a linear problem with a source.
Typically, field propagation equations are written in the mixed representation, and
treat diffractive effects in real space, while the temporal domain is handled in the
Fourier space (we write these equations in the lab frame)

∂zED(x, y, ω, z) = ik(ω)ED(x, y, ω, z) +
i

2k(ω)
∆⊥ED(x, y, ω, z)

+
iµ0ωc

2nb(ω)
PDriver(x, y, ω, z) (163)
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∂zEH(x, y, ω, z) = ik(ω)EH(x, y, ω, z) +
i

2k(ω)
∆⊥EH(x, y, ω, z)

+
iµ0ωc

2nb(ω)
PDipole({ED}, ω, z) (164)

Here ED and EH are the infrared driver pulse and harmonic fields, respectively. The
first equation is essentially equivalent to what is normally utilized in the filamentation
modeling, with the quantitative difference being that in most regimes relevant for
HHG, it is the ionization and freed-electron de-focusing that plays the most important
role in the dynamics of the driver pulse. In the second equation, the PDipole stands
for the dipole moment density (polarization) that originates in the atoms driven
by the strong field ED. EH does not enter here, because the intensity of harmonic
radiations in orders of magnitude lower than that of the driver pulse. Thus, the
evolution equation for harmonics is linear in nature, which simplifies its solution. In
particular, frequency-space sampling can be independent in the two equations, and
the latter may only be solved for the frequency range of interest. However, we will
see shortly, that this does eliminate the need for very fine resolution of the temporal
grid at which the atomic response is calculated. This calculation we describe next.

2.7.1 Strong field approximation

Strong field approximation has been a workhorse in the computational HHG modeling
field. The origin of the algorithm discussed in this section goes back to the classical
three-step model proposed by Corkum. The mathematical basis for the quantum
(actually semi-classical) treatment was put forward by M. Lewenstein in [104].

The dipole term sourcing the propagation equation for the harmonic field EH is
given as

PH(ω) = FT [Natom(t)Xnl(t)] (165)

where FT denotes a Fourier transform from t to ω, and Xnl(t) is the expectation
value for the nonlinearly induced dipole moment of an atom exposed to the driver field
ED(t). Natom(t) is the time-dependent density of remaining (i.e. so far not ionized)
neutrals. The latter quantity is normally obtained in the course of solution for the
driver field ED(t) which is coupled to the freed-electron density equation in the way
described in the previous Section.

The expression for the dipole moment Xnl(t) is given in the form of an integral
which can be interpreted as a sum of contributions from different electron trajectories
that start with the atom ionization, continue as free particles driven by the field ED(t),
and return to the parent ion where they finally recombine. This motion contributes
to the total dipole moment source seen by the propagation equation for the harmonic
field. In atomic units, the contribution to the dipole moment from these trajectories
is

Xnl(t) = 2Re{i
∫ t

−∞
dt′
(

π

ε+ i(t− t′)/2

)3/2

e−iSst(t
′,t)

d∗[pst(t
′, t) +A(t)]d[pst(t

′, t) +A(t′)]ED(t′)} (166)

Here A(t) is the vector potential of the driving field, and Sst and pst are stationary
values for the classical electron momentum

pst(t
′, t) =

1

t′ − t

∫ ′t
t

A(τ)dτ (167)
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and classical action (which is just the kinetic energy as the electron is considered free)

Sst(t
′, t) = (t− t′)(Ip − p2

st/2) +
1

2

∫ ′t
t

A2(τ)dτ (168)

with Ip representing the atom ionization potential. The properties of the atom enter
through the function d[k] which is the dipole matrix element between the ground
state and a plane wave with momentum k.

The above equations represent the most computationally intensive part of a HHG
simulation. Various tricks and approximation are used in practice to lessen this bur-
den. The most important one addresses the fact that the computational complexity
of the above scales as the square of number of grid point in the time axis. Note that
the latter must span the duration of the infrared driver pulse which is potentially
many hundreds of atomic units of time. This extent must be sampled with a grid
resolving a fraction of the atomic time unit, with longer driver wavelength requiring
finer resolutions. The cost of evaluation in (166) can thus easily become prohibitive,
especially when coupled with a spatially resolved driver simulation which in turn re-
quire to solve the above system at each spatial grid point. This may be addressed by
restricting the double integral to t − t′ being shorter then a couple of optical cycles
of the driver pulse. The rationale is that the main contribution to the integral comes
from the electron trajectories that originate and end in the near past.

The following sections illustrate application of these techniques to practical mod-
eling of experiments in the field of high-harmonic generation.

2.7.2 High-harmonic generation in a filamentation regime

I this subsection, we concentrate on the propagation aspect in generation of high
harmonic radiation in high-intensity optical pulses. The interest from the modeling
standpoint is in the role that the propagation effects play in the situations that
lead to extreme frequencies being generated “spontaneously” in natural filamentary
structures that occur as a result of spectral and spatio-temporal reshaping of the
driving optical pulse. This is a field in which simulation plays a crucial role. Not
only it serves as a tool to understand and interpret experiments, but it can predict
and identify potentially interesting regimes and thus motivate further experimental
investigations.

High-harmonic generation can be realized in many different ways, depending
mainly on the employed geometry. Two most popular arrangements are utilizing gas
jets and hollow waveguides. In the former, the nonlinear interaction with a noble gas
occurs within a a short propagation distance that is restricted by the thickness of the
jet. Yet, propagation effects manifest in phase-matching effects. On the other hand,
reshaping of the driving pulse is relatively unimportant because of the short propa-
gation distance within the gas. In the other arrangement, laser pulses interact with
the gas inside a capillary waveguide over several centimeters, and the propagation ef-
fects are naturally more important. A novel regime of high-harmonic generation was
discovered recently in highly pressurized capillary waveguide [56] filled with various
gases. Computer simulations (based on the Nonlinear Envelope Equation [16]) suggest
that the unusual regime is very much similar to that of femtosecond filamentation
in bulk media and especially in gases. Naturally, under such condition propagation
effects are crucial, and computer modeling provides important insights.

Simulations show that as the pressure increases to a few tens of atmospheres,
the intensity profile inside capillary becomes significantly smoother, which in turn
indicates that a relatively stable propagation regime is achieved. It is believed that
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the latter is what underlines high-harmonic generation. Parameters of the dynamics
appear very much resembling a free-space filamentation regime as it is known at
shorter wavelengths.

Perhaps most important are propagation effects when high harmonic radiation is
generated directly from a femtosecond filament [105]. That such a regime can indeed
result in strong HH radiation as has been demonstrated in Ref. [106].

Numerical methods employed in modeling this kind of experiment were described
in [105,107]. For each propagation distance, time-dependent laser electric field is calcu-
lated by Fourier transform from its native spectral representation, and is subsequently
used to calculate the (time-dependent) nonlinear response terms. Then, Fourier trans-
form takes the source terms back to the frequency domain where they are used to
propagate the laser and harmonic frequencies to the next step in the propagation
direction. For the driving laser field, the nonlinear terms include the third-order re-
sponse, and the ionization terms that are evaluated using intensity-dependent ioniza-
tion rates calculated, as described in [108]. This technique is essentially that described
in the section on spectral pulse propagation solvers. The ionization model includes
nonlinear absorption and concomitant losses to the optical field due to multiphoton
ionization, and the ionization-driven plasma refractive index. For the harmonic radi-
ation field the driving (source) term is given by the time-dependent dipole moment,
calculated using the strong field approximation [104], multiplied by the atomic den-
sity. Absorption (for frequencies above the ionization threshold) and linear dispersion
are treated with frequency-dependent coefficients adopted from [109].

Generation of high harmonic radiation directly form the filament, as the simu-
lations showed, is mediated by the occurrence of high-intensity spikes. Intensity of
these features can be significantly higher that that of the typical filament core. In a
sense they can be regarded as extreme events that temporarily invalidate the notion
of intensity clamping [110] that is believed to underlie much of the optical filament
physics.

This behavior, predicted in an earlier work [107], reveals that the maximal inten-
sity vs distance exhibits localized spikes during which the clamping argument does not
apply because of their very short temporal duration. Indeed, as the inset illustrates,
these spikes are carried by nearly single-cycle waveforms that form dynamically in
the trailing portion of the pulse.

It was for the first time in this work that a coupled computer simulation was
done simultaneously for both the driving pulse and the high-harmonic radiation. The
simulations showed that very intense, and extremely short sub-pulses arise with peak
intensities exceeding the intra-filament clamping intensity by a factor of three. These
sub-pulses form in the laser pulse when its trailing end is refocused onto the axis.
It is these intensity spikes that give rise to intense, isolated attosecond pulses which
could be coupled out of the filament.
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3 Implementation of propagation models

This section is devoted to a presentation of the numerical implementation of prop-
agation equations. As shown in the previous section, a canonical form exists for all
unidirectional propagation equations. This form has the same structure for enve-
lope and for carrier-resolving equations, opening the question of the possibility for
a universal scheme and solver. A numerical scheme valid for the UPPE should in-
deed apply for solving all other equations. However, there are a few distinguishing
features in the propagation equations in the canonical form making worth present-
ing different schemes. First, carrier-resolving propagation equations involve real fields
as in Maxwell equations, whereas envelope equations deal with complex envelopes.
This implies slight differences in treating the spectra of real fields compared to com-
plex envelope spectra. Second, Nonparaxiality is one of the distinguishing features of
the UPPE, making necessary to solve that equation in the three-dimensional spectral
domain for frequency and wave numbers, whereas alternatives exist for paraxial equa-
tions, be they propagating envelopes or fields. At the price of a loss of universality,
paraxial equations can indeed be solved by finite difference methods in the spatial do-
main, by space marching each frequency component after a one-dimensional temporal
to spectral Fourier transform. We adopt a presentation covering both options with a
first section devoted, but not restricted to paraxial envelope equations. We will start
by the simplest propagation equation which describes diffraction of a laser beam as
this provides the basic building block of the general scheme valid for all paraxial prop-
agation equations. We then consider resolution of the UPPE in Fourier space, which
apply in general to nonparaxial, carrier-resolving or envelope, propagation equations.

The generic form of the considered propagation equations is retrieved in models
for different physical problems, therefore the methods we describe apply as well in
different fields. The reader is refferred to [36] and reference therein for a review of
numerical schemes we apply to propagation equations.

3.1 Envelope propagation models

In this section, we consider paraxial envelope equations. The proposed implementation
methods extend in a straightforward way to paraxial carrier-resolving equations, thus
without loss of generality, we restrict the presentation to complex envelopes.

3.1.1 Diffraction

Diffraction occurs in all media and even in vacuum. Not surprisingly, the structure
of the diffraction operator as a product of a frequency dependent coefficient and a
transverse Laplacian acting only on transverse coordinates is the common feature of all
paraxial envelope or carrier-resolving propagation equations. Implementing diffraction
therefore serves as a basic building block for all paraxial equations. We first consider
monochromatic beams, i.e. a sufficiently long laser pulse with central wave number k0

and a narrow spectrum so that all frequency dependence can be neglected. Diffraction
of the monochromatic beam is described by the paraxial equation

∂E
∂z

=
i

2k0
∆⊥E (169)

We start by describing beam propagation in 1+1 dimensions, i.e, one transverse di-
mension and one evolution (or propagation) variable z. We will consider either a
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planar geometry with transverse direction x, or a cylindrical geometry with revolu-

tion symmetry, with a radial transverse variable r ≡
√
x2 + y2. From the point of

view of the computational cost, the revolution symmetry is an interesting geometry
for propagating a laser beam when it does not break-up into multiple beamlets since
its cost corresponds to that of a 1-dimensional numerical method. In this section E is
therefore assumed to depend only on the transverse variable x or r, and the evolution
variable z. The transverse Laplacian operator is therefore reduced to ∆⊥ ≡ ∂2/∂x2

in the planar geometry, or to ∆⊥ ≡ ∂2/∂r2 + (1/r)∂/∂r in cylindrical geometry. To
avoid redundancy, we will use r as a transverse variable but switching from cylindri-
cal to planar geometry can be implemented in a single generic tool: Unless otherwise
stated, all formulas are the same for both geometries with r ↔ x. We will specify
minor differences between planar and cylindrical geometry by using x instead of r
only where it is necessary.

Initial condition The propagation starts at z = 0 where the beam amplitude and
phase profiles are known, e.g., the beam has a Gaussian shape with quadratic spatial
phase modeling a flat-phase beam having passed through a lens of focal length f :

E(r, z = 0) = E0 exp

(
− r

2

w2
0

− ik0r
2

2f

)
. (170)

The quantities w0 and E0 are the beam width and the initial amplitude.

Boundary conditions Boundary conditions must also be specified to solve Equation
(169). In free space, one usually requires that the field vanish far from the peak.
The highest order derivative in Equation (169) is second order, thus two boundary
conditions must be specified at the boundaries of the numerical grid r = rmin and
r = rmax. These depend on the type of beam one wants to model.

In a cylindrical geometry, standard beams have intensity with a zero-slope at the
origin and vanishes far from the origin, which gives the boundary conditions:

∂E(r, z)

∂r

∣∣∣∣
r=0

= 0, (171)

E(r = rmax, z) = 0 (172)

In a planar geometry, the boundary conditions for a standard beam vanishing far
from the peak read:

E(x = xmin, z) = 0, (173)

E(x = xmax, z) = 0 (174)

Boundary conditions (173) and (174) in a cylindrical grid would be suitable for the
propagation of vortex beams (having a zero field and phase singularity at the origin).

On finite difference schemes Finite difference scheme consist in representing the
solution to the original PDE by its values at discrete set of points and replacing
the PDE by a set of coupled equations for these discrete quantities. In practice,
we discretize the transverse variable r to form a numerical grid of finite size. For a
uniform grid with N⊥ + 2 grid points, i.e., N⊥ inner points and 2 boundaries. We
define rj = rmin+j∆r, j = 0 . . . N⊥+1 and the step-size ∆r = (rmax−rmin)/(N⊥+1).
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For a cylindrical geometry rmin = 0. Similarly to the discretization of the transverse
variable, we will describe the propagation over a distance zmax by making steps
zn = n∆z, n = 0 . . . Nz of constant size ∆z. Let Enj denote E(r = rj , z = zn).

A standard task of numerical analysis is to design robust algorithms, which have
desirable properties including good numerical stability, accuracy, and efficiency with
respect to computational time.

Discretization of PDEs is associated with local and global truncation errors due
to the approximation of partial derivatives by their discretized versions. For example
in Eq. (169), the evolution operator is discretized as:

∂E
∂z

(r = rj , z = zn) '
En+1
j − Enj
∆z

+O(∆z), (175)

which is first-order accurate in ∆z. A second-order accurate discretization of the
second-order space-derivative appearing in the transverse Laplacian reads:

∂2E
∂r2

(r = rj , z = zn) '
Enj+1 − 2Enj + Enj−1

∆r2
+O(∆r2). (176)

The local truncation error in the numerical solution is the error generated at a partic-
ular step, when the solution at the previous step is considered as exact (in practice, it
is not exact, except if it corresponds to the initial condition). For example Eq. (176)
gives a second order local truncation error. The cumulative error in the numerical so-
lution to a PDE on an interval in the evolution variable is called the global truncation
error and the order of accuracy is the order of the global truncation error.

Numerical stability refers to the fact that a numerical calculation does not amplify
truncation or approximation errors. If approximation errors decay as the computation
is carried forward, the numerical scheme is stable. If the errors grow, the numerical
solution departs from the correct physical behavior of the modeled system and the
numerical scheme is said to be unstable. The stability of finite difference schemes
applied to linear partial differential equations can be commonly determined by a von
Neumann stability analysis [37,38] which is based on the decomposition of the so-
lution including the instability waves representing errors into Fourier series and a
linear stability analysis of these waves. Depending on the numerical scheme, stability
can require restrictive conditions on the step-sizes to be fulfilled. Scheme stability is
in general difficult to investigate when the partial differential equations under con-
sideration are nonlinear or nonuniform. Therefore, stability conditions on step-sizes
associated with the linear-part of our canonical propagation equation may not be suf-
ficient to ensure the stability of the complete scheme but constitute a good starting
guess of the restrictions on the step sizes used in the scheme.

Implicit vs explicit schemes: Finite difference schemes are furthermore classified
into explicit and implicit schemes: An explicit scheme allows for the calculation of
quantities at each position J on the grid for the evolution variable N + 1, say EN+1

J ,
explicitly from the previously known quantities Enj , n = 0 . . . N , j = 0 . . . N⊥+ 1. An

implicit scheme requires the numerical resolution of implicit equations coupling EN+1
j

for several j with the already known quantities in order to find EN+1
j for all j, and

are computationally more expensive. However, the efficiency of a calculation must
be evaluated with stability constraints in mind. Explicit finite difference schemes for
solving Eq. (169) are associated with very restrictive stability conditions in the form
∆z � k0∆r

2, ruining the advantage of an explicit scheme [38]. We leave it to the
reader to analyze the details in Ref. [38] and we will directly present a resolution
method based on an implicit method, namely the Crank-Nicolson method [39], the
computational cost of which is balanced by the fact that it is unconditionally stable
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and allows us to replace many small explicit steps by a single large implicit step to
advance the solution.

Crank-Nicolson method A standard and efficient scheme to perform numerical sim-
ulations of Eq. (169) and equations having the same structure, as e.g. Eq. (23), is
the Crank-Nicolson scheme [39]. It is an implicit, unconditionally stable numerical
scheme that is second order accurate in both ∆r and ∆z.

Below, ∆j denotes the discretized diffraction operator defined as

∆jE
n
j ≡ Enj−1 − 2Enj + Enj+1 +

ν

2j
(Enj+1 − Enj−1), (177)

where ν = 0 for planar geometry and ν = 1 for cylindrical geometry. ∆j can be
formally represented as a tridiagonal matrix acting on the vector Enj , with j =
0 . . . N⊥ + 1.

∆jE
n
j =



−2 v0 0 · · · · · · 0 0
u1 −2 v1 0 · · · 0 0

0
. . .

. . .
. . . 0 0 0

0 0 uj −2 vj 0 0

0 0 0
. . .

. . .
. . . 0

0 · · · · · · 0 uN⊥ −2 vN⊥
0 · · · · · · · · · 0 uN⊥+1 −2





En0
En1
...
Enj
...

EnN⊥
EnN⊥+1


(178)

where uj = 1 − ν/2j and vj = 1 + ν/2j. At this stage, note that u0 and v0 are
ill-defined for a cylindrical geometry. In fact, the coefficients in the first and last lines
of the matrix ∆j will be replaced later to take boundary conditions into account. We
therefore assume v0 = 1 for both planar and cylindrical geometries.

The Crank-Nicolson scheme consists in discretizing the evolution operator in Eq.
(169) as ∂zE(r = rj , z = zn) = (En+1

j − Enj )/∆z, thus it is centered at step n+ 1/2.

On the right hand side of Eq. (169), the diffraction operator is discretized and applied
to the average of the field at distance n and n+ 1 so as to center the scheme at step
n+ 1/2. This yields the implicit equation:

En+1
j − Enj = iδ(∆jE

n+1
j +∆jE

n
j ) (179)

where δ = ∆z/4k0(∆r)2. The solution of Eq. (179) formally reads as

En+1
j = (1− iδ∆j)

−1(1 + iδ∆j)E
n
j , (180)

or equivalently:
L−E

n+1
j = L+E

n
j (181)

and requires multiplication of the tridiagonal complex matrix L+ ≡ 1 + iδ∆j by the
vector Enj , inversion of the tridiagonal complex matrix L− ≡ 1 − iδ∆j and mul-

tiplication of L−1
− by L+E

n
j . The above definition of matrix L+ and L− must be

modified to take into account the boundary conditions. Equation (180) allows for
space marching the field over one propagation step. Applying it repeatedly for Nz
steps will thus propagate the input field En=0

j over a distance Nz∆z, where En=Nz
j

is obtained. Without modifications, the first line (j = 0) of Equation (180) reads as
(1+2iδ)E1

0−iδv0E
1
1 = (1−2iδ)E0

0 +iδv0E
0
1 , which does not match the discretized ver-

sion of the boundary condition (171): E1
0 = 0, or that of (171). Boundary conditions
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can be simply enforced by rewriting this first line of L− as (1, 0, 0, . . . , 0) for the planar
geometry, or as (1,−1, 0, . . . , 0) for the circular geometry, and the first line of L+ as
(0, . . . , 0) in both cases. In circular geometry, this ensures that a first-order-accurate
discretized version of Eq. (171) is satisfied: (E1

1 − E1
0)/∆r = 0. An implementation

of the boundary condition should at least match the order of the inner scheme. In-
troducing a ghost value E−1 at r=−∆r and a second-order-accurate version of Eq.
(171): (E1

1 −E1
−1)/2∆r = 0 together with the discretization introduced in the scheme

for inner grid points (180) allows us to eliminate the ghost value and preserve the
overall second order accuracy of the scheme. The first lines of L± are obtained by
identifying the coefficients of: (1 + 4iδ)E1

0 − 4iδE1
1 = (1 − 4iδ)E0

0 + 4iδE0
1 . The last

lines of L− and L+ are treated similarly to enforce boundary condition (172). Thus,
the complex matrix L− and L+ including proper treatment of boundary conditions
reads:

L+E
n
j =



d
(o)
0,+ d

(o)
1,+ 0 0 0 0 0

iδu1 1− 2iδ iδv1 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 iδuj 1− 2iδ iδvj 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 iδuN⊥ 1− 2iδ iδvN⊥
0 0 0 0 0 0 0





En0
En1
...
Enj
...

EnN⊥
EnN⊥+1


(182)

L−E
n
j =



d
(o)
0,− d

(o)
0,− 0 0 0 0 0

−iδu1 1 + 2iδ −iδv1 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 −iδuj 1 + 2iδ −iδvj 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 −iδuN⊥ 1 + 2iδ −iδvN⊥
0 0 0 0 0 0 1





En0
En1
...
Enj
...

EnN⊥
EnN⊥+1


(183)

where first order accurate boundary conditions (o = 1) at the origin are enforced by:

d
(1)
0,+ = 0, d

(1)
1,+ = 0, (184)

d
(1)
0,− = 1, d

(1)
1,− = −ν, (185)

and ν is unity for cylindrical geometry or zero for the planar case. For second order
accurate boundary conditions (o = 2) at the origin:

d
(2)
0,+ = 1− 4iδ, d

(2)
1,+ = 4iδ, (186)

d
(2)
0,− = 1 + 4iδ, d

(1)
1,− = −4iδ. (187)

Different type of boundary conditions can be implemented in a similar way, and
potentially involve more than a single line of the complex matrix L+ and L− for each
boundary. For example, it may be needed to add boundary layers on one or several
edges of the numerical box so as to avoid spurious reflection on the boundary in cases
where free-space propagation is desired. The goal of the boundary layer is to mimic
a physical process over a limited domain close to the boundary, that will prevent as
much as possible incoming waves to be reflected. This can be achieved with absorption
of the incoming waves, or diffusion. With a careful selection of the boundary layer
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Table 3. Crank-Nicolson Algorithm

– 1. definition of useful data, e.g., beam width w0, focusing length f , laser wavelength λ0,
index of refraction n0 and central wave number k0 = n02π/λ0.

– 2. definition of grids and z-invariant quantities for space marching the field over one
step Eq. (180).
– number of inner grid points N⊥
– r-grid: rj = rmin + j∆r, for j = 0, · · · , N⊥ + 1
– matrix L+ and L−: L± = 1± iδ∆j

– boundary conditions: replace first and last lines of L± as indicated in Eqs. (182)
and (183)

– calculation of the inverse L−1
−

– calculation of the product L = L−1
− L+

– 3. definition of the initial field E0
j = E(rj , z = 0), j = 0 . . . N⊥ + 1, e.g., as in Eq. (170)

for a Gaussian beam
– 4. perform a loop for Nz = M ×Kmax propagation steps, with an outer loop including

computationally expensive diagnostics each M steps and an inner loop including
costless diagnostics performed each step:

outer loop: k = 1, . . . ,Kmax

inner loop: m = 1, . . . ,M
n = (k − 1)M +m
Enj = LEn−1

j

perform costless diagnostic n
end inner loop
perform expensive diagnostic k

end outer loop

features, the latter choice was shown to lead theoretically to no reflection and was
called perfectly matched layers boundary conditions [40].

We can now detail in table 3 the different steps to build a simple propagation code
for simulations of Eq. (169):

Steps 1 to 3 correspond to the initialization of the propagation. Step 4 consti-
tutes the bulk of the scheme; it is centered around one propagation step following
Eq. (180). By diagnostics, we mean the selection of a given set of computed data
and their storage in external files for post-processing. In order to save computational
time and memory, diagnostics can be separated into computationally expensive diag-
nostics and costless diagnostics. Costless diagnostics do not require long CPU time
or large disk-memory and can thus be performed at each step without significant
performance degradation. Typically, these concern sub-dimensional diagnostics such
as, e.g., monitoring of the maximum intensity vs propagation distance. In contrast,
expensive diagnostics require more computer resources, time or memory, such as mon-
itoring the full spatial, temporal or spectral- beam or pulse dynamics and not only
subdimensional slices. A proper balance between expensive and costless diagnostics
must be ensured for a good efficiency of the whole simulation.

Spectral technique We present in this section one of the most straightforward way to
implement a numerical scheme for solving Eq. (169). It consists in a spectral method
relying on a Fourier decomposition of the laser beam into its spectral components.
We assume here a planar geometry and note that the method extends easily to the



56 Computational Methods for Nonlinear PDEs

cylindrical geometry by replacing Fourier by Hankel transforms:

Ẽ(kx, z) =

∫ +∞

−∞
E(x, z) exp(−ikxx)dx (188)

Applying this transformation to Eq. (169) leads to a simple set of ordinary differential

equations for the spectral components of the beam envelope Ẽ(kx, z):

∂Ẽ(kx, z)

∂z
= −i k

2
x

2k0
Ẽ(kx, z) (189)

which has a formal solution:

Ẽ(kx, z) = Ẽ(kx, z = 0)× exp

(
−i k

2
x

2k0
z

)
(190)

From Eq. (190), the solution obtained by back transforming the spectral components
into the spatial domain reads

E(x, z) =
1

2π

∫ ∞
−∞
Ẽ(kx, z = 0)× exp

(
−i k

2
x

2k0
z + ikxx

)
dkx (191)

The numerical implementation of this is made straightforward by the availability
of libraries including fast Fourier transform modules. We can now detail in Table
4 the different steps to simulate propagation governed by Eq. (169) with a Spectral
Decomposition Algorithm: Boundary conditions are assumed to be periodic and auto-
matically enforced by the Fourier decomposition, i.e., by the Fast Fourier Transforms
performed at each step. In practice, this means that a sufficiently large spatial box
must be chosen if this method is used to simulate free space propagation with fields
exponentially decaying far from the peak. In a too small box, a beam would sooner
or later hit a boundary and be artificially reintroduced at the opposite boundary.

Naturally Eq. (191) shows that the solution at an arbitrarily large propagation dis-

tance can be obtained in a single step from the input spectral components Ẽ(kx, z = 0)

to the final far-field Ẽ(kx, z), without iteratively space marching the solution over Nz
propagation steps of size z/Nz. This option is however restricted to linear propagation
equations. Multiple steps as indicated in table 4 become necessary when nonlinear
terms are added on the right hand side of Eq. (169), which is the reason for hav-
ing specified them in the scheme. Due to the availability of Fast Fourier Transform
routines in computational libraries and in spite of the imposed periodic boundary
conditions, this scheme is fully explicit and might thus appear as more efficient than
the Crank-Nicolson scheme. This advantage is lost when the scheme is extended to
cylindrical geometries. In this case, FFT must be replaced by Hankel transforms.
Although Fast Hankel Transform algorithms have been developed, these are not so
fast as FFTs and usually require a specific grid point distribution. These constraints
must be kept in mind in the design of efficient extensions of the above schemes.

Test of Diffraction Any practical implementation of Eq. (169) must reproduce prop-
erly existing analytical solutions. Equation 169) allows for simulations of the propa-
gation of Gaussian beams. The laws of Gaussian optics must therefore be reproduced
by a numerical simulation of Eq. (169). In appendix A, we remind the reader of the
laws for Gaussian optics for direct test of the practical implementaion of Eq. (169)
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Table 4. Spectral Decomposition Algorithm

– 1. definition of useful data, e.g., beam width w0, focusing length f , laser wavelength λ0,
index of refraction n0 and central wave number k0 = n02π/λ0.

– 2. definition of grids and z-invariant quantities for space marching the field over one
step Eq. (190).
– number of grid points Nx
– x-grid: xj = xmin + j∆x, for j = 0, · · · , Nx − 1
– kx-grid: kxj = j∆kx, for j = 0, · · · , Nx/2− 1; kxj = −π/∆x+ (j −Nx/2)∆kx, for
j = Nx/2 · · ·Nx − 1 with ∆kx = 2π/(Nx∆x).

– precalculation of the vector Aj ≡ exp[−2iδ(kxj∆x)2] for j = 0, · · · , Nx − 1, with
δ ≡ ∆z/4k0(∆x)2 and kxj∆x = 2πj/Nx for j = 0, · · · , Nx/2−1, kxj∆x = 2π(−1 +
j/Nx) for j = Nx/2 · · ·Nx − 1.

– 3. definition of the initial field E0
j = E(xj , z = 0), j = 0 . . . N⊥ + 1, and its spectrum

Ẽ0
j = Ẽ(kxj , z = 0) = FFT (E0

j ), j = 0 . . . N⊥ + 1.
– 4. space march the solution by performing a double-loop for Nz = M × Kmax

propagation steps, with expensive and costless diagnostics:

outer loop: k = 1, . . . ,Kmax

inner loop: m = 1, . . . ,M
n = (k − 1)M +m

Ẽn−1
j = FFT (En−1

j )

Ẽnj = Ẽn−1
j ×Aj for all j

Enj = FFT (Ẽnj )
perform costless diagnostic n

end inner loop
perform expensive diagnostic k

end outer loop

3.1.2 Diffraction and nonlinear effects

Extended Crank-Nicolson scheme The Crank-Nicolson scheme extends to propa-
gation equations of the NLS type such as Eq. (112) or Eq. (120). In this aim, we
will treat nonlinearity by the second order Adams-Bashforth scheme which is an ex-
plicit scheme working in general for all type of nonlinear terms. Thus, we define a
prototypical equation

∂E
∂z

=
i

2k0
∆⊥E +N (E), (192)

where N (E) models the nonlinearity under investigation, e.g. N (E) ≡ iω0

c n2IE for the

optical Kerr effect as in Eq. (112) or N (E) ≡ iω0

c n2IE − βK
2 I

K−1E for multiphoton
absorption and Kerr effect as in Eq. (120). The advantage of the Adams-Bashforth
scheme with respect to a completely implicit sheme lies in the fact that it preserves
the second-order accuracy of the Crank-Nicolson sheme and allows fast calculations of
the right hand side in Eq. (192). The implementation of a fully implicit scheme with
nonlinear terms would indeed require the resolution of nonlinear implicit equations,
which cannot be done as easily as solving linear implicit equations. It usually requires
predictor-corrector routines and of a large number of matrix inversions, thereby in-
creasing the computational cost.

The proposed alternative can be viewed as applying a second order Adams-
Bashforth time integrator to nonlinear term in the Crank-Nicolson scheme which
reads:

En+1
j − Enj = iδ(∆jE

n+1
j +∆jE

n
j ) +

{
3

2
Nn
j −

1

2
Nn−1
j

}
, (193)
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Table 5. Crank-Nicolson Algorithm with explicit nonlinearity treated by the second order
Adams-Bashforth scheme

– 1. same as in table 3 and definition of data for nonlinearity, e.g., n2, βK .
– 2. definition of grids and matrix storage of L+ and L−1

− : L± = 1 ± iδ∆j as in table 3.
Introduction of boundary conditions in L+ and L−.

– 3. definition of the initial field E0
j = E(rj , z = 0), j = 0 . . . N⊥ + 1.

– 4. double-loop for Nz = M ×Kmax propagation steps with two types of diagnostics at
each step and each M steps:

outer loop: k = 1, . . . ,Kmax

inner loop: m = 1, . . . ,M
n = (k − 1)M +m
calculate and store vector Nn−1

j (loop j, · · · , N⊥)

calculate V n−1
j = L+E

n−1
j (product matrix-vector)

add Sn−1
j = V n−1

j + (3Nn−1
j −Nn−2

j )/2 (sum of vectors)

Enj = L−1
− Sn−1

j (product matrix-vector)
perform costless diagnostic n

end inner loop
perform expensive diagnostic k

end outer loop

where

Nn
j ≡ ∆zN (Enj ) = ∆z

{
i
ω0

c
n2|Enj |2Enj −

βK
2
|Enj |2K−2Enj

}
. (194)

Note that the nonlinear terms on the rhs of Eq. (193) only involve previously obtained
fields Enj and En−1

j . The coefficients 3/2 and -1/2 ensure the second order accuracy.

A scheme where the nonlinear terms are simply written as Nn
j on the rhs of Eq. (193)

would work as well, however, the second order accuracy of the Crank-Nicolson scheme
would be lost. Equation (193) is still an implicit equation but it allows us to express
the vector En+1

j without doing more effort than in the absence of nonlinearities:

En+1
j = (L−)−1[L+E

n
j +

3

2
Nn
j −

1

2
Nn−1
j ] (195)

Equation (195) extends Eq. (181) to the case of nonlinear propagation over a sin-
gle step and constitutes the core of the scheme, which must be repeated to cover
the entire propagation domain. The numerical scheme will therefore be similar to
the Crank-Nicolson scheme in table 3, with the following differences: It is no longer
necessary to compute and store the product L−1

− L+ in the initialization step 2 since

each propagation step use independently L+ and L−1
− , which should thus be stored

in different tables. Only the 4th step in the numerical scheme of table 3 must be
modified as indicated in table 5.

The overall stability of the scheme depends on the nonlinear terms, so that a
control of the step size ∆z may be necessary in contrast to the unconditionally stable
Crank-Nicolson scheme of table 3; however, the stability constraint is often found to
be not so drastic as that for the description of diffraction with an explicit scheme
(∆z ≤ k0(∆r)2) [38], which justifies the explicit treatment of nonlinearities.

Split-step technique Propagation equations and more generally PDEs including sev-
eral source terms as in Eq. (192) can be solved by an alternative scheme, the split-step
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Table 6. Split-step algorithm with nonlinearity treated by the explicit second order Adams-
Bashforth scheme and linear term treated by the Crank-Nicolson scheme

– 4- double-loop for Nz = M ×Kmax propagation steps with two types of diagnostics at
each step and each M steps:

outer loop: k = 1, . . . ,Kmax

inner loop: m = 1, . . . ,M
n = (k − 1)M +m
calculate and store vector Nn−1

j = ∆zN (En−1
j ) (loop j, · · · , N⊥)

first half-step:E
n−1/2
j = En−1

j (3Nn−1
j −Nn−2

j )/2

second half-step:Enj = LE
n−1/2
j (product matrix-vector)

perform costless diagnostic n
end inner loop
perform expensive diagnostic k

end outer loop

method, that we introduce in the following. The idea of the split-step technique is to
perform a fractional step for each source term by means of a suitable scheme that
applies to each part. For example the propagation equation (192) takes the form
∂zE = LE +N (E), where L ≡ (i/2k0)∆⊥. Previously presented algorithms allows us
to treat each source term as in the set of equations:

∂zE = LE , (196)

∂zE = N (E). (197)

Equation (196) representing the linear part of Eq. (192) can be solved by e.g. the
Crank-Nicolson algorithm (Eq. (180) and table 3) or by means of the spectral decom-
position algorithm (Eq. (190) and table 4). Equation (197) representing the nonlinear
part of Eq. (192) can be solved by e.g. the second order Adams-Bashforth method
presented in previous section which reads:

En+1
j = Enj +

3

2
Nn
j −

1

2
Nn−1
j (198)

A split step scheme consists in sequentially propagating the envelope over a fractional-
step of size ∆z by each of the algorithms used for Eqs. (196) and (197). Here,
fractional-step is not related to the step size but means that only part of source

terms are considered. By denoting E
n+1/2
j the discretized envelope after the first

split-step, we obtain the scheme

E
n+1/2
j = Enj +

3

2
Nn
j −

1

2
Nn−1
j , (199)

En+1
j = (1− iδ∆j)

−1(1 + iδ∆j)E
n+1/2
j . (200)

Hence, for the split-step scheme applied to Eq. (192), stages 1 to 3 of table 5 are
identical with additional storage of matrix L = L−1

− L+ as in table 3, whereas stage
4 is modified as indicated in table 6. Note that the split-step scheme can be gener-
alized to more than two half-steps when there are more than two source terms. The
separation between linear and nonlinear effects is also convenient but not mandatory
to implement a split-step scheme.
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3.1.3 Diffraction and Dispersion

In Sections 3.1.1 and 3.1.2, we have considered beam propagation with E = E(r, z)
depending on the transverse r and evolution z variables only. The methods we have
presented also apply to pulses with one or more additional dimensions. For example
with a temporal dimension E = E(r, t, z), the new coordinate is discretized as tl =
tmin+l∆t and pulse propagation is described by applying one of the presented schemes
to each time tl. This is achieved by including each propagation step of previous
schemes in a loop on the time index l. The discretized pulse envelope at a given
propagation distance zn must be defined over a two dimensional grid as Enj,l = E(r =

rj , t = tl, z = zn) for j = 0, · · · , N⊥ and l = 0, · · · , Nt. The input pulse, e.g., a
Gaussian pulse with spatial and temporal quadratic phases modeling lens-focusing
(focal length f) and chirp C can be defined as:

E(r, t, z = 0) = E0 exp

(
− r

2

w2
0

− ik0r
2

2f
− (1 + iC)

t2

t2p

)
, (201)

and its discretized counterpart as E0
j,l = E(r = rj , t = tl, z = z0). As long as the prop-

agation equation does not involve differential operators with time derivatives, these
are the only additional features extending previous schemes from (1+1) to (2+1)
dimensions. However, higher dimensionality is usually associated with couplings be-
tween the different slices in the additional dimension. In the time direction, dispersive
effects plays this role. We will consider the lowest dispersive order, namely second or-
der dispersion to present a standard way to extend the Crank-Nicolson scheme to
(2+1)D simulations. We thus start from the diffraction-dispersion equation:

∂E
∂z

=
i

2k0
∆⊥E − i

k
(2)
0

2

∂2E
∂t2

(202)

The split-step technique naturally applies to design an algorithm for Eq. (202) with
each fractional step relying on either a Crank-Nicolson algorithm, a Fourier decom-
position, or a combination of both. The efficient way to implement the first option
leads to the Alternate direction implicit scheme. The second option is straightforward
and the third will be presented in section 3.1.4.

Gaussian optics for dispersion Starting from a numerical code where diffraction
described by Eq. (169) was successfully implemented and checked with respect to
the laws of Gaussian optics, any implementation of dispersive terms as in Eq. (202)
requires new tests ensuring that (i) diffraction still works properly, (ii) dispersion is
correctly implemented and (iii) the combination of both effects is correct.

Test (i) can be easily performed by setting k
(2)
0 = 0 as an additional input con-

dition and checking again the laws for Gaussian optics. Similarly, test (ii) can be
performed by setting the diffraction coefficient to zero (parameter δ in the schemes)
and by comparing the results to the laws for Gaussian pulse optics. See appendix
B for a reminder of the laws of Gaussian optics to be used for a direct test of the
implementation of Eq. (169).

3.1.4 Diffraction, dispersion and nonlinear effect - spectral extended Crank-Nicolson
scheme

This section presents an extension of the Crank-Nicolson scheme for (2+1)D simula-
tions of paraxial propagation equations presented in the theory section, namely those
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which in the canonical form read as:

∂Ê
∂z

=
i

2K0(Ω)
∆⊥Ê + iD(Ω)Ê +

i

2K0(Ω)

ω2

c2
P̂
ε0
, (203)

where Ê = Ê(r,Ω, z), Ω = ω−ω0, K0(Ω) ≡ K(Ω,k⊥ = 0) denotes any of the K func-
tions listed in the Table 2, and the subscript zero in K0 will be omitted for simplicity.
The proposed extended Crank-Nicolson scheme is simply applied frequency compo-
nent by frequency component and therefore includes all effects that are naturally
included in frequency dependent terms of Eq. (203), namely dispersion, space-time
focusing and self-steepening.

The temporal coordinate is discretized with Nt equally spaced steps of size ∆t:
tl = t0 + l∆t for l = 0 · · ·Nt − 1, we have a corresponding discretization of the
spectral domain ωl = ω0 + l∆ω for l = 0 · · ·Nt/2 − 1, ωl = ω0 − π/∆t + l∆ω for
l = Nt/2 · · ·Nt − 1, with ∆ω = 2π/[Nt∆t]. The natural variable for the envelope
spectra is Ωl = ωl − ω0. Note that in this section, the index l will refer to either
discrete times or discrete frequencies, depending on whether the quantity we consider
belongs to the temporal or the spectral domain. For completeness, we reintroduce a
current in the nonlinear terms of Equation (203):

∂Ê
∂z

=
i

2K(Ω)
∆⊥Ê + iDÊ +

i

2K(Ω)

ω2

c2
P̂
ε0
− 1

2K(Ω)

ω

c

Ĵ
ε0c

(204)

Let Kl and Dl denote K(Ωl) and D(Ωl), respectively. The numerical scheme extending
Eq. (193) and corresponding to Eq. (204) reads:

Ên+1
j,l − Ê

n
j,l = iδl(∆jÊ

n+1
j,l +∆jÊ

n
j,l) + idl(Ê

n+1
j,l + Ênj,l) +

3

2
N̂n
j,l −

1

2
N̂n−1
j,l (205)

where

δl = δ
k0

Kl
=

∆z

4(∆r)2Kl
(206)

dl =
∆zDl

2
(207)

N̂n
j,l ≡

i∆z

2Kl
ω2
l

c2
P̂nj,l
ε0
− ∆z

2Kl
ωl
c

Ĵ nj,l
ε0c

(208)

The solution to equation (205) represents one step along the propagation direction:

Ên+1
j,l = (L−,l)

−1[L+,lÊ
n
j,l +

3

2
N̂n
j,l −

1

2
N̂n−1
j,l ] (209)

where L−,l ≡ 1− idl− iδl∆j , L+,l ≡ 1 + idl + iδl∆j . With respect to previous expres-
sions of L− and L+, the matrices L−,l and L+,l are different only by an additional
frequency dependent term, i.e., l-dependent, on the diagonal. As for L− and L+,
the matrices L−,l and L+,l operate on vectors representing transverse profiles (de-

scribed by index j) of the Fourier components Êj,l for the envelope, corresponding
to the fixed frequency Ωl; in other words, Eq. (209) allows us to apply the standard
Crank-Nicolson scheme to each frequency component l of the envelope spectrum, thus
performing one step from Enj,l at distance n to En+1

j,l at distance n+1. This step must

be inserted within a loop on frequencies (l).
Depending on the need to save either memory or simulation time, matrices L−,l

and L+,l may be either precomputed (to minimize simulation time, in which case the
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Table 7. Spectrally extended Crank-Nicolson algorithm

– 1. definition of useful data: laser and medium parameter; in particular everything needed
to properly define the dispersion relation in the medium and nonlinearity, e.g., Kerr
parameters, ionization rates, etc.

– 2. definition of grids and z invariant quantities:
– r-grid: rj = j∆r, for j = 0, · · · , N⊥ + 1
– t-grid: tl = tmin + l∆t, for l = 0, · · · , Nt − 1
– ω-grid: ωl = ω0 + l∆ω for l = 0, · · · , Nω/2− 1
ωl = ω0−π/∆t+ l∆ω for l = Nω/2, · · ·Nω−1, with ∆ω = 2π/[Nω∆t] and Nω = Nt

– calculation and storage of the one dimensional tables: Kl, Dl, dl, δl, pl ≡ i∆z
2Kl

ω2
l

ε0c2
,

ul ≡ − ∆z
2Kl

ωl
ε0c2

– 3. definition of the initial field, E0
j,l = E(rj , tl, z = 0) by e.g., Eq. (201) for Gaussian

profiles of the beam and pulse. Input spectral components by FFT: Ê0
j,l = FFT (E0

j,l)
– 4. double-loop on propagation steps with diagnostics each step and each M steps:

outer loop: k = 1, . . . ,Kmax

inner loop: m = 1, . . . ,M
n = (k − 1)M +m
calculate quantities for nonlinearity, e.g.:

electron density ρn−1
j,l = ρ(rj , tl, zn−1) (solve ODE (128) for j = 1, · · · , N⊥)

Raman-Kerr term Qn−1
j,l = Qi(rj , tl, zn−1) (solve ODE (130) for j = 1, · · · , N⊥)

calculate and store Pn−1
j,l , Jn−1

j,l (j = 1, · · · , N⊥; l = 0, · · · , Nω − 1)

{P̂n−1
j,l , Ĵn−1

j,l } = FFT({Pn−1
j,l , Jn−1

j,l }) (FFT) j = 1, · · · , N⊥
Ên−1
j,l = FFT(En−1

j,l ) (FFT) j = 1, · · · , N⊥
calculate and store Nn−1

j,l from Eq. (208) (multiply plP̂
n−1
j,l , ulĴ

n−1
j,l and sum)

loop on frequencies
l = 0, · · · , Nω − 1

calculate L+,l, L−,l (tridiagonal complex matrices)
calculateL−1

−,l (matrix inversion)

calculate V n−1
j,l = L+,lÊ

n−1
j,l (product matrix-vector)

add Sn−1
j,l = V n−1

j,l + (3N̂n−1
j,l − N̂

n−2
j,l )/2 (sum of vectors)

Ênj,l = L−1
−,lS

n−1
j,l (product matrix-vector)

end loop on frequencies (l)

inverse Fourier transform Ênj,l → Enj,l (FFT−1) j = 1, · · · , N⊥

store Enj,l
perform costless diagnostic n

end inner loop (m)
perform expensive diagnostic k

end outer loop (k)

additional amount of memory used corresponds to the size of a 14×N⊥ ×Nω table
of real numbers, seven diagonals of complex numbers being needed to describe L−,l
and L+,l) or recomputed at each step (to minimize memory usage). In the second
option, step 2 of the scheme is simplified since only a few frequency dependent tables
must be precomputed in order to reconstruct L−,l and L+,l in step 4 with a minimum
number of operations. The changes in steps 1 to 4 of the Crank-Nicolson scheme are
indicated in table 7.
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Step 4 still constitutes the bulk of the scheme. It is evident that efficiency of the
code is enhanced if all unnecessarily repetitive calculations are avoided. These concern
loops including multiplications by factors which do not vary with the loop index. For
example it is clear that the quantities pl and ul in front of the nonlinear polarization
and current must be precalculated and stored in step 2 so that the calculation of Nn−1

j,l

needs only two multiplications and an addition per element (j, l). Constant factors can
also usually be removed via renormalization of the discretized equations. As a general
rule, the efficiency of a code must be optimized by a careful count of all operations
appearing in nested loops and an attempt to minimize them. For example, all matrix-
vector operations performed on with tridiagonal matrices must be implemented so as
to avoid unnecessary multiplication and sum of zeros. This can be achieved by using
compact matrix storage for the non-nil diagonals only, as discussed in [38].

3.2 Numerical Methods for UPPE Solution

Having formulated our pulse propagation models in Section 2, we have seen a number
of numerical simulation techniques valid for paraxial equations and we now address
the question of how to solve non-paraxial equations numerically. To keep the notation
simple, and equations readable, we will restrict ourselves to carrier-resolving equations
in the form of the simplest version of UPPE, namely a one-component propagation
equation in a bulk medium. We also suppose that all nonlinear interactions are ex-
pressed in the nonlinear polarization P and for simplicity omit from our equations
the current density term. Note that the numerical approach described next translates
directly to a general vectorial case, and its practical implementation in software is
essentially the same.

3.2.1 UPPE as a large system of ordinary differential equations

We have written the UPPE equation in a form which resembles the usual structure
of pulse propagation equations and to which simulation practitioners in the field are
most used to. The UPPE expresses evolution of the spectral (both temporal and
spatial) transform of the electric field, and its right-hand-side contains linear and
nonlinear terms:

∂zEkx,ky (ω, z) = ikzEkx,ky (ω, z)+
iω2

2ε0c2kz
Pkx,ky (ω, z) where kz =

√
k2(ω)− k2

x − k2
y .

(210)
Let us point out a few important points before going into details of a solver implemen-
tation. First, unlike many propagation models, this is in a spectral representation. It
describes evolution of a Fourier spectrum, rather than that of a real physical field.
One important consequence is that what we have is not a partial differential equa-
tion anymore. Rather, it is a system of ordinary differential equations for spectral
amplitudes, albeit a very large system. Thus, there are no partial derivatives to ap-
proximate, which makes numerical solution conceptually very simple: One can utilize
any available library for ODE systems, and the only remaining thing to do is to define
a right-hand-side calculation subroutine which will be fed to the chosen ODE solver.

Second, the above representation, which is in terms of spectral amplitudes for
electric field, is not exactly the one a numerical solver should work with. This is
because the slowest-evolving variables in this problem only change in response to
nonlinearity, and these are actually the native variables Akx,ky which appeared in the
course of UPPE derivation:

Ekx,ky (ω, z) = Akx,ky (ω, z) exp [ikzz] ≡ Akx,ky (ω, z) exp [i
√
k2(ω)− k2

x − k2
yz] (211)
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Their evolution equation (see Section 2.3) only contains nonlinear terms:

∂zAkx,ky (ω, z) = +
iω2

2ε0c2kz
e−ikzzPkx,ky (ω, z) with kz =

√
k2(ω)− k2

x − k2
y . (212)

It is obvious that spectral amplitudes A are the slowest variable in the pulse evolution
problem, because they do not change at all in a linear regime. This also means that
UPPE equations exactly solve the linear part of a problem, which is an extremely
desirable property (reader is encouraged to review various propagation equations
specifically to recall how much effort often goes even into design of the linear part of all
these equations ). The most important advantage is the ability to model an arbitrary
medium with frequency dependent index of refraction and frequency dependent losses.

Alternatively, one can view Eq. (212) as Eq. (210) to which integrating factor
exp [ikzz] has been applied. This cancels oscillations in the spectral amplitudes of the
electric field which are due to linear propagation. Nonlinearity alone contributes to
the evolution of the native UPPE variables Akx,ky , and implementation based on them
thus yields to faster numerical integration. This point of view makes it evident that
there is a degree of freedom in the relation between E and A amplitudes. Namely, one
could also use an integrating factor exp [ikz(z − z0)], thus moving the point at which
A = E from z = 0 to z0. Lacking a better term, we say that E and A amplitudes are
aligned at z0.

It is imperative that a simulator utilizes this degree of freedom. At z = z0 spectral
amplitudes of E and native variables A coincide, but as z increases, E and A diverge
from each other. Although always connected by a simple complex phase change ∆φ =
kz(ω, kx, ky)(z− z0), one must realize that the latter can attain very large values. To
avoid numerical difficulties in handling the corresponding exponentials, the relation
between E and A has to be re-aligned after every integration step by moving z0 to
the current propagation distance. After the new array of A is produced in the ODE
solver taking a step ∆z, re-alignment with E is achieved by

Anew
kx,ky (ω,∆z) = exp [ikz(ω, kx, ky)∆z]Aold

kx,ky (ω,∆z) (213)

After this operation, E and A amplitudes coincide once again when the next integra-
tion step is to be executed. Note that the above procedure corresponds to nothing
but to the free, linear propagation of the field, and re-alignment therefore amounts
to applying a linear propagator. In what follows it is assumed that amplitudes are
aligned before each step, which means that z = 0 in Eq. (212) should be understood
as a beginning of the current ODE solver step. It also means that all z values are
small, restricted to z < ∆z.

Equation (212) is not completely explicit, because it hides the fact that the non-
linear polarization P must be calculated from the current value of the electric field.
Indeed, polarization is a functional of E(x, y, t, z) taken at a fixed z value. As a rule,
medium models are formulated in real space. For example Raman-effect contribution
to the change of refractive index can be expressed as convolution (in time) calculated
at a given spatial point (x, y, z) ≡ (r, z). While the concrete relation between electric
and polarization fields is unimportant for how the UPPE solver is designed, the fact
that medium response is calculated in real space is crucial. We will therefore assume
that a function implementation P (x, y, t, z) = PNL({E(x, y, t, z)}) is given, and that
it calculates nonlinear polarization as a function of time from a history of the electric
field at a fixed spatial point.
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Let us incorporate this into our notation and write down an explicit definition of
the UPPE ODE system. The unknown functions are Akx,ky (ω, z) and they obey

∂zAkx,ky (ω, z) = +
iω2

2ε0c2kz
e−ikzzPkx,ky (ω, z, {E(x, y, z, t)}) , kz =

√
k2(ω)− k2

x − k2
y

(214)
where

Pkx,ky (ω, z, {E(x, y, t)}) = (2π)−3/2

∫
e+iωt−ikxx−ikyyPNL({E(x, y, t, z)}) dtdxdy

(215)
is a Fourier (or in general spectral) transform of PNL({E(x, y, t, z)}) which in turn
encapsulates nonlinear medium properties. (Note that a solver implementation does
not need to, and in fact should not know about its concrete functional form!) To
evaluate the above, one first needs to calculate the real-space field from the native
computational variables through another (inverse) Fourier transform

E(x, y, t, z) = (2π)−3/2

∫
e−iωt+ikxx+ikyyAkx,ky (ω, z)eikzz dωdkxdky (216)

Now it should be clear that when an ODE solver requests evaluation of its right-
hand-side function for a given value of z, and for a given array Akx,ky (ω, z), spectral
transforms will be invoked in both directions. One can view this as a price to pay for
the elimination of partial derivatives from propagation equations, and for the ability
to solve the linear problem exactly.

There is one more issue to clarify before transition to discretization, and that is
that of a moving frame. It is of course advantageous, and in fact necessary, to follow
pulse evolution in a frame of reference which moves with a velocity vf (with respect
to the laboratory frame) chosen such that at each location z in a lab, the pulse arrives
at t ≈ 0, and thus stays located around the center of the temporal computational
domain. This is achieved by expressing time t through t = τ + z/vf where τ is our
new temporal variable. Inspection of Eqs. (214-216) reveals that this amounts to a
simple modification of the linear propagator:

exp [ikz(ω, kx, ky)∆z]→ exp [ikz(ω, kx, ky)∆z −∆zω/vf ] (217)

We emphasize that vf is an arbitrary parameter which does not reflect any physics
of the model. It is merely an expression of what one deems to be the best reference
frame. Quite often it is reasonable to choose

1

vf
=

1

vg
=
∂kz(ωpulse, kx = 0, ky = 0)

∂ω
(218)

which means that the computational frame of reference moves with the group velocity
of the pulse. Readers familiar with Nonlinear Schrödinger Equation should realize that
it is exactly the choice that makes a pulse described by NLS to stay localized in the
vicinity of τ ≈ 0.

3.2.2 Discretization and spectral transforms

Because any UPPE solver is spectral in all dimensions, grid representation of both,
real-space and spectral space fields is determined by properties of discrete spectral
transforms. Depending on the symmetry of the problem, these are either variants of
Fourier or discrete Hankel transforms.
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Spatial (linear) axis
For a spatial dimension, say x, that spans one side of a computational domain

box, the values of coordinates (in real space) and transverse wave numbers kx (in
spectral space) are those of ordinary Fourier transform sampling points. Both sets
are equidistant and equal in size.

Temporal axis
A computational domain axis in time direction has its corresponding Fourier trans-

form which is slightly modified due to the fact that physical fields are real-valued.
It is sufficient to sample spectral amplitudes Akx,ky (ω) only for positive angular fre-
quencies ω. Moreover, one can restrict discrete sampling points to ω ∈ (ωmin, ωmax) if
one only knows the medium susceptibility χ(1)(ω) in this interval. Only these discrete
frequencies become active in the simulations in the sense that they carry correspond-
ing spectral amplitudes. When spectral-to-real transform is invoked, the active set of
frequency-samples is padded by zeros before a standard Fourier transform is executed.
This has the effect that the resulting real-space amplitude becomes the so-called an-
alytic signal. While its real part corresponds to physical electric field, its modulus
squared can be interpreted (in suitable units) as the time-averaged light intensity.
Both quantities are often needed in the calculation of various nonlinear medium re-
sponses. Note that in this arrangement the total number of discrete samples in the
time dimension is more than twice the number of active samples in the frequency
dimensions. However, the number of ODEs to solve is given by the active frequency
samples.

Radial axis
For problems with axial symmetry, it is advantageous to utilize the radial discrete

Hankel transform instead of a two-dimensional Fourier transform. Because the dis-
crete Hankel transform is represented by a full matrix, it is not fast in the sense fast
Fourier transforms are. Still, the main computational savings are related to the re-
duced dimensionality of variable-arrays representing physical fields. Sampling points
in both real and spectral space are the same and namely given by scaled zeros of
Bessel function J0. For example N samples in real space are ri = ui/uNR where
J0(ui) = 0. Note that there is no radial sample located directly on the axis.

Readers concerned about the usage of slow spectral transform, should note that
there are fast discrete Hankel transforms. However, UPPE solver requires a truly
orthogonal transform implementation, because forward and inverse transformations
are executed many times over the same array. Only the proper Hankel transform is
orthogonal (and in addition equal to its own inverse) and should be preferred on
grounds of numerical accuracy.

3.2.3 Integration of evolution equations for spectral amplitudes

The core of a UPPE solver can be based on essentially arbitrary ODE-solver library.
A good library should have the capability to choose between different algorithms, and
it will also take care of allocating auxiliary arrays based on the selected method. The
advantage of using a canned library over hard-coding a concrete algorithm into the
solver implementation is the flexibility in the choice of method, and also the fact that
everything concerning auxiliary variables involved in ODE solution remains hidden.
However, the UPPE system can contain several million variables, and that an ODE
solver will, depending on the requested method, allocate several auxiliary arrays of
the same size. As a consequence, the bulk of the memory allocated for the whole
simulation will actually be requested by the solver. Not only the memory needs will
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be several times larger than those for one copy of all fields, but also that the method
performance can be affected by the size of the system solved. In practice simpler
methods tend to perform better than the more sophisticated ones. In particular,
all methods that require calculation of a Jacobian are utterly unsuitable for UPPE
solution. Fortunately, the standard ODE solver work-horses such as various Runge-
Kutta methods work well.

Now, suppose we have calculated an array Akx,ky (ω, z) representing the solution at
propagation distance z. To keep the notation simple, discrete wave numbers kx, ky and
active angular frequencies ω now represent array indices. To calculate Akx,ky (ω, z +
∆z), an ODE solver is invoked to produce it. Because we synchronize A and E
representations after each step, we can understand z = 0 as if the currently executed
step was the very first one. A pseudo-code for the integration loop reads:

Repeat for each step:
A) Invoke ODE Solver:

Akx,ky (ω, 0)→ Akx,ky (ω,∆z)
B) Re-align native and field variables:

Akx,ky (ω,∆z) = exp [i(kz(ω, kx, ky)− ω/vf )∆z]Akx,ky (ω,∆z)

Readers may note that the above integration may seem like an operator splitting
method. It does looks as if nonlinear and linear propagators were applied in turns the
same way as in the split-step approach. However, this is where the similarity ends.
The second sub-step is nothing but a shift of our reference frame. If our numerics
did not suffer from rounding, and could evaluate exponentials with arbitrarily large
arguments, this addition would not be necessary.

Behind the scenes, while executing A), ODE solver will invoke calculation of the
right-hand-side of our ODE system, i.e. it asks to evaluate

iω2

2ε0c2kz
e−i(kz−ω/vf )δzPkx,ky (ω, z, {E(x, y,∆z, t)})

for given spectral amplitudes Akx,ky (ω). Depending on the ODE algorithm, call of
this function occurs several times during a single integration step, each time with
a different value of ∆z. UPPE solver implements the function call in the following
steps:

1. Apply linear propagator to shift from z = 0 to ∆z:

Akx,ky (ω) 7→ Akx,ky (ω) exp [+i(kz(ω, kx, ky)− ω/vf )∆z]

2. Perform the spectral transform from spectral to real space:

E(x, y, t) = FFT{Akx,ky (ω)}

3. In real-space representation, calculate nonlinear medium response for a given field
E(x, y, t), using a user-supplied medium-response implementing algorithm PNL:

P (x, y, t) = PNL{E(x, y, t)}

4. Perform spectral transform from the real to spectral space:

Pkx,ky (ω) = FFT−1{P (x, y, t)}
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5. Apply linear propagator to undo the previous shift in z:

Pkx,ky (ω) 7→ Pkx,ky (ω) exp [−i(kz(ω, kx, ky)− ω/vf )∆z]

6. Finally, multiply by the coupling factor and return result to the ODE solver:

Pkx,ky (ω) 7→ iω2

2ε0c2kz
Pkx,ky (ω)

The above is the most computation-intensive part of UPPE solution and thus
merits attention with respect to efficient parallel implementation.

3.2.4 Parallelization

Even if a problem has axial symmetry, a typical UPPE ODE system contains several
million variables. It is therefore more or less necessary that computations are par-
allelized. Let us briefly point out facts that may influence our parallelization design
decisions.

First, we have to take into account the fact that the UPPE framework is inherently
spectral. This means that each processor or a thread of execution will, at some point,
require access to distant locations in allocated arrays. The shared memory paradigm
is therefore a natural way to go, and the current UPPEcore implementation uses
Pthreads. OpenMP (i.e. pragma based loop parallelization) would probably work
equally well for our purposes.

Second, one has to decide which parts of the code will actually execute in parallel.
Of course, ideally all of them, but the question is if it is worth of the trouble. It turns
out that most of the computational effort in UPPE is spent within the ODE system
right-hand-side calculations and in performing spectral transforms. This invites a
parallel work crew strategy: A master thread creates a family of workers or slaves
and dispatches these to perform work as needed. The master thread executes all
work outside of the ODE solver loop which includes all initialization, analysis or
diagnostics of results, input, and output. Master also runs the main ODE loop without
help from its slaves. (This is of course a compromise between between the achievable
parallelization efficiency and complexity of the solution!) This means that almost any
serial ODE solver library can be used as a plug-in for the UPPE solver.

The parallel working crew enters a synchronization barrier immediately after their
creation. Here, they wait for commands from their master who specifies which is the
next function to execute in parallel. For example, this may be a spectral transform.
Within the parallel section, each of the workers takes over a proportional part of the
load. When the parallel section is done, workers meet again at the synchronization
barrier, awaiting further commands from the master.

Obviously the biggest drawback of this design is that the ODE part of the code
remains serial. Although it is relatively small, it would limit possible parallel speed
up with a large number of threads. An alternative solution is akin to the domain
decomposition strategy; the set of ODE equations is evenly distributed between mul-
tiple instances of ODE solvers, each executed by an independent thread. However,
this solution requires a mild modification of the ODE routines that control adaptive
integration step. Some earlier versions of the UPPEcore were based on this approach.
Since the performance penalty with the working crew method is mostly negligible in
practice, it is preferred because it does not require open access to the code of the
ODE solver.
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3.3 Numerical methods for nonlinear medium response models

This section is devoted to the numerical implementation of nonlinear response models
by using a method similar to the so-called exponential time differencing method [42].

3.3.1 Numerical implementation of plasma related terms

A formal solution to Eq. (124) may be written as:

J(r, t, z) =
q2
e

me

∫ t

−∞
exp

(
− t− t

′

τc

)
ρ(r, t′, z)E(r, t′, z) dt′ (219)

From the knowledge of the field and electron density for all grid points, it is therefore
possible to determine the current step by step by expressing for each fixed spatial
position (r, z) the current at time t+∆t as a function of the current at previous time
t:

J(r, t+∆t, z) =
q2
e

me

∫ t+∆t

−∞
e−t+∆t−t

′/τcρ(r, t′, z)E(r, t′, z) dt′ (220)

Omitting the (r, z) dependence for simplicity, we obtain:

J(t+∆t) =
q2
e

me
e−∆t/τc

{∫ t

−∞
e−(t−t′)/τcρ′E′ dt′ +

∫ t+∆t

t

e−(t−t′)/τcρ′E′ dt′

}
(221)

where ρ′E′ ≡ ρ(r, t′, z)E(r, t′, z). This is rewritten by using a trapezoidal integration
rule for the second term on the right hand side:

J(t+∆t) = e−∆t/τc
{
J(t) +

∆t

2

q2
e

me
ρ(t)E(t)

}
+
q2
e∆t

2me
ρ(t+∆t)E(t+∆t) (222)

Similarly, a formal solution to Eq. (128) reads:

ρ(t) = ρnt

∫ t

−∞
exp

(
−
∫ t

t′
[W ′′ofi −W ′′ava] dt′′

)
W ′ofi dt

′ (223)

where e.g. W ′ofi ≡ Wofi[I(t′)]. Eq. (223) is similar to Eq. (219) , thus its solution is
similar to Eq. (222) and reads:

ρ(t+∆t) = e−
∫ t+∆t
t

[W ′ofi−W
′
ava] dt′

{
ρ(t) +

∆t

2
ρntWofi[I(t)]

}
+
ρnt∆t

2
Wofi[I(t+∆t)]

(224)
The solutions (224) and (222) take the generic form:

A(t+∆t) = a[A(t) + ηQ(t)] + ηQ(t+∆t), (225)

where a and η are step-dependent constants and Q(t) is a known function over the
whole integration domain. With the (a,η) couples indicated in table 8, the discretized
version of Eq. (225) which read as

Al+1 = a[Al + ηQl] + ηQl+1, (226)

allows for the determination of the electron density and current densities over the
entire time window by a loop over the time index l.
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Table 8.

A(t) Q(t) a η

J(t) ρ(t)E(t) e−∆t/τc ∆t
2

q2e
me

ρ(t) Wofi[I(t)] e−
∫ t+∆t
t [W ′ofi−W

′
ava] dt′ ∆t

2
ρnt

3.3.2 Numerical implementation of the Raman-Kerr response

The inclusion in the numerical scheme of the Raman-Kerr contribution is formally
equivalent to that of the plasma. We indicate two possibilities to achieve this task.

– 1. Resolution of an ordinary differential equation: Assuming that the envelope
E(r, t, z) is known at a given propagation distance z, both the electron den-

sity ρ(r, t, z) and the Raman-Kerr contribution Qi(r, t, z) =
∫ t
−∞R0 exp[−Γ (t −

τ)] sin[ωR(t− τ)]|E(r, τ, z)|2dτ are solutions to a non-homogeneous ODE that in-
volves E(r, t, z) as a source term. The temporal profiles ρ(r, t, z) and Qi(r, t, z) are
indeed obtained for each fixed spatial coordinate (r, z) by solving Eq. (128) for ρ
with boundary condition ρ(−∞) = ρ0 � ρat and Eq. (130):
These tasks can be done by any ODE solver based on, e.g., the Runge-Kutta
scheme.

– 2. Direct resolution. An explicit formulation satisfying Eq. (130) exists for the
Raman-Kerr response (the electron density, solution to Eq (128) admits a similar
and simpler explicit formulation):

Qi(r, t, z) =

∫ t

−∞
R0 exp[−Γ (t− τ)] sin[ωR(t− τ)]|E(r, τ, z)|2dτ (227)

which can be rewritten as the imaginary part of

Q(r, t, z) = R0

{
e−Γt+iωRt

∫ t

−∞
eΓτ−iωRτ |E(r, τ, z)|2dτ

}
(228)

A numerical scheme to compute Eq. (228) is obtained by using a trapezoidal
evaluation of the integral term:

Q(r, t+∆t, z) = e(−Γ+iωR)∆tQ(r, t, z)+
∆t

2

[
|E(r, t+∆t, z)|2 + e(−Γ+iωR)∆t|E(r, t, z)|2

]
(229)

Discretization of this scheme leads to an expression allowing the calculation of the
temporal profiles for the complex Raman-Kerr response Q(r, t, z) at each fixed
spatial position (r, z).

Qnj,l+1 =

{
e(−Γ+iωR)dtQnj,l +

∆t

2
[|Enj,l+1|2 + e(−Γ+iωR)dt|Enj,l|2]

}
(230)

from which Qi(r, t, z) ≡ Im(Qnj,l) is obtained. Scheme (230) must be inserted

within an outer loop on j (transverse coordinate) and an inner loop on l (time).

4 Conclusion

The last decade has brought lot of progress in ulrafast nonlinear optics, especially
in the area of generation and control of femtosecond pulses with extreme intensi-
ties. This advancement would not be possible without the contribution of numerical
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simulations. Computer models have not only been instrumental in interpretation of
experimental results, but represent the most important component of the theoretical
picture. As a result, a growing number of researchers in the area wear two hats, one
of an experimentalist and one of a computational physicist. Ranks of those who need
to utilize computing as a component of their experimental work are wider still.

This motivated the inclusion of a simulation and modeling course and writing
of this text. Our main goal was to provide a self-contained overview of theoretical
approaches and practical computer simulation methods relevant in the general area
of nonlinear optics. Most of the material is presented at a level of detail sufficient to
serve as an introduction into computer simulation for the broadest possible audience
of researchers and students.

A Gaussian Optics

Using the input Gaussian beam defined by Eq. (170), analytical formulas for Gaussian
beam propagation read as:

E(r, z) = E0
w0

w(z)
exp

(
− r2

w2(z)
+ i

k0r
2

2R(z)
− iΨ(z)

)
, (231)

where the beam parameters evolution is defined as:

w(z)
R(z)
Ψ(z)

 =


w0

[
(1− z

f )2 + z2

z2R

]1/2
z − df +

df (f−df )
z−df

arctan
(

z−df
(fdf−d2f )1/2

)
 or

w(z)
R(z)
Ψ(z)

 =


wf

[
1 +

(z−df )2

z2f

]1/2
z − df +

z2f
z−df

arctan
(
z−df
zf

)


(232)
where the first set in Eq. (232) involves only the input beam parameters and the
focal distance df = f/(1 + f2/z2

R), where zR = k0w
2
0/2 denotes the Rayleigh length

associated with the input beam width. The second set in Eq. (232) refers to the
standard laws for which the origin of coordinate along the propagation axis is the
waist position z = df . Other quantities are the beam waist wf = w0f/

√
f2 + z2

R and
the Rayleigh length relative to the beam waist zf ≡ k0w

2
f/2. Both sets of equations

are identical as consistency is ensured by the relation df (f − df ) = z2
f .

B Gaussian Optics for dispersion

Using Eq. (201) as an input condition, the law for Gaussian pulse propagation reads:

E(t, z) = E0
tp
T (z)

exp

(
− t2

T 2(z)

{
1 + i[C + (1 + C2)

z

zds
]

}
− iΦ(z)

)
, (233)

where the beam parameters evolution is defined as:

[
T (z)
Φ(z)

]
=

 tp [(1 + C z
zds

)2 + z2

z2ds

]1/2
arctan

(
(1+C2)z+C

zds

)
 (234)

where zds = t2p/2k
(2)
0 denotes the dispersion length. For normal dispersion (k

(2)
0 > 0)

and a positive chirp coefficient, the pulse duration increases with distance whereas
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Table 9. List of Abbreviations

PDE Partial Differential Equation
ODE Ordinary Differential Equation

UPPE Unidirectional Pulse Propagation Equation
FME Forward Maxwell Equation
FWE Forward Wave Equation
FOP First-Order Propagation equation
SPE Short Pulse Equation

NLS Nonlinear Schrödinger Equation
NEE Nonlinear Envelope Equation
LEE Linear Envelope Equation
FEE Forward Envelope Equation
PC-NLS Partially Corrected Nonlinear Schrodinger Equation

SVEA Slowly Varying Envelope Approximation
SEWA Slowly Evolving Wave Approximation
SEEA Slowly Evolving Envelope Approximation
GFEA Generalized Few-cycle Envelope Approximation
MA minimal approximation
PA Paraxial Approximation

FFT Fast Fourier Transform
FHT Fast Hankel Transform

MPI Multiphoton Ionization
MPA Multiphoton Absorption
GVD Group Velocity dispersion
THG Third Harmonic Generation
SPM Self Phase Modulation
SCG Super Continuum Generation
CEP Carrier Envelope Phase
FWHM Full Width at Half Maximum

for a negative chirp coefficient, the pulse duration first decreases until it reaches
Tm = tp/(1 + C2) at distance zm = −Czds/(1 + C2), and then increases while the
Gaussian pulse shape is preserved. All these properties must be reproduced in a
correct implementation of dispersion.

Since the linear propagation of the pulse preserves the separation of time and
space variables, test (iii) consists again in comparing numerical results with the laws
for Gaussian optics for the beam and the pulse when both diffraction and dispersion
have non nil coefficients.

C Useful definitions

In order to facilitate navigation throughout this text, we provide tables with a list of
abbreviations (see Table 9) and a list of symbols used in Equations (see Table 10).

C.1 Abbreviations

C.2 Symbols
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Table 10: List of symbols

Symbol Unit Physical quantity or constant
E, E, E V/m electric field (vector, scalar, envelope)
B, B, B H/m magnetic field (vector, scalar, envelope)
H, H, H H/m magnetic induction (vector, scalar, envelope)
D, D, D C/m2 displacement field (vector, scalar, envelope)
J, J , J A/m2 free charge current (vector, scalar, envelope)
P, P , P C/m2 nonlinear polarization (vector, scalar, envelope)
P(1), P (1), P(1) C/m2 Linear polarization (vector, scalar, envelope)
es unit vector in the polarization plane (direction)
z - unit vector in the z-direction
A+, A−, Aµ units of A amplitudes of the forward (+) or backward (−)

propagating components
λ = ±1, ± - indicator for forward or backward propagation
Eλ, Hλ harmonic wave solutions to Maxwell equations
E0, H0 amplitudes of harmonic waves
Em, Hm amplitudes of transverse modes
Nm(ω) normalisation constant
X,Y, T m, m, s normalization volumes or window sizes
δm,n, δΩ,ω - Kroenecker symbols
ε0 = 8.85× 10−12 F/m permittivity of free space
µ0 = 4π × 10−7 H/m permeability of free space
c = 2.998× 108 m/s light velocity in vacuum
me = 9.11× 10−31 kg electron mass
qe = 1.60× 10−19 C electron charge
~ = 1.05× 10−34 m2kg/s Planck constant
ω s−1 frequency coordinate
ω0, ωr s−1 pulse central and reference frequencies
Ω ≡ ω − ω0 s−1 frequency departure from ω0

t, τ , t′ s (laboratory, local) time coordinate
z,ζ m propagation coordinate
x,y m transverse coordinates
ε(t), ε(ω) - permittivity of the medium
χ(1)(ω) - material linear susceptibility
n(ω) - linear refraction index
n0 ≡ n(ω0) - linear refraction index at ω0

I W/m2 I = ε0cn0|E|2/2, Pulse intensity
Eω0 , E3ω0 V/m Electric field envelopes for fundamental and third

harmonic pulses
k(ω) ≡ n(ω)ω/c m−1 material dispersion relation
k0 ≡ k(ω0), kr ≡ k(ωr) m−1 wavenumbers at frequency ω0, ωr
vg ≡ 1/k

(1)
0 , vf m/s pulse group and moving frame velocities

k
(l)
0 ≡ dlk/dωl|ω0

sl/m dispersion coefficients

κ(ω) ≡ k0 + k
(1)
0 (ω − ω0) m−1 propagation constant in NEEs with MA

D(i∂τ ) ≡
∑+∞
l=2

k
(l)
0

l! (i∂τ )l m−1 high-order dispersion
Kz, Kζ m−1 propagation constants for the canonical equation
Q, Q m−1 nonlinear dispersion operators for the canonical

equation
K0(Ω) ≡ K(Ω,k⊥ = 0) m−1 linear frequency dispersion
∂z ≡ ∂/∂z m−1 partial derivative with respect to z
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r ≡ (x, y), r ≡
√
x2 + y2 m transverse coordinate vector, modulus

kx, ky, kz m−1 transverse (x, y) and longitudinal (z) wave numbers
k⊥ ≡ (kx, ky) m−1 transverse wave vector

k⊥ ≡
√
k2
x + k2

y m−1 modulus of the transverse wave vector

∆⊥, ∇2
⊥ m−2 transverse Laplacian

χ(3) m2/V2 material third-order susceptibility
n2 m2/W nonlinear index coefficient
α - fraction of delayed contribution to the Kerr effect
ωR, Γ s−1 characteristic Raman frequencies
Qi V2/m2 effective oscillator amplitude (Raman response)
R0 ≡ (Γ 2+ω2

R)/ωR,R(t) s−1 Raman response (amplitude and functional form)
K - number of photons involved in MPA
βK W1−Km2K−3 cross section for multiphoton absorption
σK s−1W−Km2K cross section for multiphoton ionization
Ui J ionization potential or gap
W (I), Wofi, Wava s−1 ionization rate, optical field ionization, avalanche
τc s collision time
ρ, ρnt m−3 density of electrons and neutral atoms
ρc m−3 critical plasma density
ρf m−3 density of free space charge
σ(ω) m2 cross section for inverse Bremsstrahlung
Pcr, Pin, P0 W critical, input and peak powers
p = Pin/Pcr - ratio of input to critical powers
f , df m beam curvature (focal length) and focal distance
w0, wf m beam radius (1/e2), waist
zR ≡ k0w

2
0/2, zf ≡

k0w
2
f/2, zds ≡ t2p/2k

(2)
0

m Rayleigh lengths for input beam width or waist,
Dispersion length

C - Chirp coefficient
tp, τFWHM s pulse duration (half duration at 1/e2, FWHM)
w(z), R(z), T (z), Ψ(z),
Φ(z)

m, m, s, - , - Beam width, curvature, pulse duration, axial
phases in laws for Gaussian optics

Tm ≡ tp/(1 + C2), zm ≡
−Czds/(1 + C2)

s, m Minimal pulse duration (chirped pulse) and pulse
shortening distance

∆r, ∆x, ∆z m radial, transverse and longitudinal step-sizes
∆t, ∆ω s, s−1 time and frequency step-sizes
xmin, xmax m boundaries of the transverse numerical grid
rmin, rmax m boundaries of the radial numerical grid
ωmin, ωmax s−1 boundaries of the spectral grid
N⊥, Nx, Nt, Nz - Numbers of steps in radial, transverse, time and

longitudinal directions
M , Kmax - Numbers of propagation steps between numerical

diagnostics
∆j , ∆t Discretized Laplacian operators
ν = 0 or 1 - switch between planar and cylindrical geometries
δ = ∆z/4k0(∆r)2 - normalized diffraction coefficient

d = −∆zk(2)
0 /4(∆t)2 - normalized dispersion coefficient

L±(δ) ≡ 1 ± iδ∆j , L ≡
L−1
− L+

- Tridiagonal matrices in the Crank-Nicolson scheme

L+,l, L−,l - frequency dependent tridiagonal matrices
Kl, Dl m−1 discretized values for K and D at ωl
δl = ∆z

4(∆r)2Kl frequency dependent diffraction coefficient
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dl = ∆zDl
2 discretized dispersion values

L, N linear and nonlinear source terms
Nn
j , Nn

l,j - discretized nonlinearity at zn, rj , ωl
A∗ (or c.c.), AT - complex conjugate of A, transpose of A
A ∗B - convolution

Â(x, y, ω) 1D Fourier transform of A(x, y, t), (t→ ω)

Ã(kx, ky, ω) 3D Fourier transform of A(x, y, t)
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