
802 Vol. 47, No. 4 / 15 February 2022 / Optics Letters Letter

Feed-forward neural network as nonlinear dynamics
integrator for supercontinuum generation
Lauri Salmela,1,∗ Mathilde Hary,1,2 Mehdi Mabed,2 Alessandro Foi,3 John M.
Dudley,2 AND Goëry Genty1

1Photonics Laboratory, Physics Unit, Tampere University, 33014 Tampere, Finland
2Institut FEMTO-ST, Université Bourgogne Franche-Comté CNRS UMR 6174, 25000 Besançon, France
3Laboratory of Signal Processing, Tampere University, 33014 Tampere, Finland
*Corresponding author: lauri.salmela@tuni.fi

Received 16 November 2021; revised 7 January 2022; accepted 7 January 2022; posted 7 January 2022; published 3 February 2022

The nonlinear propagation of ultrashort pulses in optical
fibers depends sensitively on the input pulse and fiber param-
eters. As a result, the optimization of propagation for specific
applications generally requires time-consuming simulations
based on the sequential integration of the generalized non-
linear Schrödinger equation (GNLSE). Here, we train a
feed-forward neural network to learn the differential propa-
gation dynamics of the GNLSE, allowing emulation of direct
numerical integration of fiber propagation, and particu-
larly the highly complex case of supercontinuum generation.
Comparison with a recurrent neural network shows that the
feed-forward approach yields faster training and computa-
tion, and reduced memory requirements. The approach is
generic and can be extended to other physical systems. ©
2022 Optica Publishing Group

https://doi.org/10.1364/OL.448571

Neural networks (NNs) are a subset of machine learning tech-
niques widely used in data analysis, classification, and prediction
[1]. NNs possess the ability to link the input and output of a mul-
tidimensional system, of particular benefit for modeling complex
relationships, as is typically the case in the presence of nonlin-
earity [2–8]. NNs are being increasingly applied in optics [9],
with recent results including mode-locked laser optimization
[10–12] and the analysis of ultrafast instabilities [13–15].

A particular focus of NNs in optics has been the study of
fiber nonlinear propagation and supercontinuum (SC) genera-
tion [13,14,16], complex processes involving a number of effects
[17]. The dynamics depend sensitively on the injected pulse and
fiber parameters, and matching an input to achieve a desired
spectral or temporal output is a complex multivariate problem.
The traditional approach for optimization is based on param-
eter scanning using step-by-step integration of the generalized
nonlinear Schrödinger equation (GNLSE) [18]. Yet while the
GNLSE can accurately model fiber nonlinear dynamics, direct
integration is time-consuming, especially with a large parame-
ter space of potential boundary conditions (input pulse power,
duration and chirp, fiber dispersion, nonlinearity, and length).

To overcome this, machine learning techniques have been
applied to optimize nonlinear fiber dynamics, including the use

of genetic algorithms to tailor broadband spectra [19,20]. More
recently, recurrent neural networks (RNNs) using only input
temporal (or spectral) intensity profiles have successfully emu-
lated fiber propagation [14], accurately predicting SC evolution
maps in computation times as short as 1 s. A limitation, how-
ever, is the initial training phase of several hours, owing to the
number of loops associated with the RNN internal memory.

Here, we show how a faster and simpler feed-forward neural
network (FNN) can model the full-field (intensity and phase)
evolution of ultrashort pulses in optical fiber over a wide range
of input pulse properties and fiber parameters. The key concep-
tual novelty is to train the network to learn GNLSE differential
propagation dynamics, i.e. to replicate the change in intensity
and phase of the electric field between elementary longitudi-
nal steps. Once trained, the network can model the long-term
evolution from a given input. We also perform a detailed com-
parison with a RNN model, highlighting the benefits of the FNN
approach in terms of speed and memory.

Figure 1 shows the principle. We first generate an ensemble
of data for broadband coherent SC generation (using Matlab on
a 3.4 GHz 4-core Intel Core i7). We included a one photon per
spectral bin noise model [17], but its influence was found to be
negligible. These data are generated by numerically integrating
the GNLSE using the split-step method [18]. A summary of
input pulse and fiber parameter ranges used in all cases outlined
in this Letter is given in Supplement 1.

The dynamic maps are characterized by vector [In(zi, X),
Φn(zi, X)], where In and Φn represent intensity and phase at
distance zi, expressible in either temporal (X = T) or spectral
domains (X = ω), from which the complex electric field can
be reconstructed. Subscript n = 1, . . . , N indicates a particular
map for a given set of input pulse and fiber parameters. The key
idea in Fig. 1(a) is to teach the network the differential change
in intensity and phase associated with an elementary propaga-
tion distance ∆z. To achieve a performance advantage relative
to direct integration, the aim is to use a significantly larger step
in the FNN than that used in GNLSE integration. To this end,
the intensity and phase evolution are downsampled at distances
zi = (i − 1)∆z (i = 1, . . . , M), where∆z = L/M = 0.1 cm is, e.g.,
50 times larger than in the GNLSE simulations used to gener-
ate the data. The downsampled vectors are then used as the
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Fig. 1. Principle of FNN integrator. (a) Training differential
dynamics. Training uses a number of input–output pairs gener-
ated by direct integration of the GNLSE and corresponding to the
temporal (X = T) or spectral (X = ω) intensity I and phase Φ of
the propagating field at distances separated by ∆z (see text). The
network variables are adjusted via gradient descent backpropaga-
tion. (b) Iterating propagation prediction. Once trained, the network
predicts the intensity and phase evolution iteratively via a feedback
loop. The prediction is initialized from the intensity and phase at
the fiber input.

FNN input. The network output vectors after an elementary step
∆z are [In(zi+1, X),Φn(zi+1, X)]. The change in the intensity and
phase modeled by the FNN is then compared with that from the
GNLSE via an error function [13].

Once trained, the neural network acts as a very fast and
memory-efficient GNLSE integrator. It predicts intensity and
phase [I(z + ∆z, X),Φ(z + ∆z, X)] after an elementary propaga-
tion distance ∆z given the complex field [I(z, X),Φ(z, X)] at
distance z, from which the dynamic evolution of the complex
electric field can be reconstructed. The trained FNN can then be
used to predict propagation dynamics over an extended distance
using an iterative loop (see Fig. 1(b)), such that intensity and
phase [I(zi+1, X),Φ(zi+1, X)] are fed back to the network as a new
input to predict [I(zi+2, X),Φ(zi+2, X)] at distance z + 2∆z. This
operation is performed over the full propagation distance.

The neural network itself consists of three hidden layers of
2000 nodes with ReLU activation (f (x) = max(0, x)) and a sig-
moid output layer with 2048 nodes. The codes were written in
Python using Keras with Tensorflow backend [21]. The FNN is
trained on a single GPU (NVIDIA Quadro K620) for 80 epochs
with RMSprop optimizer and adaptive learning rate. The net-
work can be trained in the temporal or spectral domain, and
with data input on either linear or logarithmic (dB) scales. In the
following results, we used ensembles of spectral evolution maps
in logarithmic scale. Examples of time domain evolution using
linear input are given in Supplement 1 (Fig. S1). The network
accuracy is tested with a separate set of propagation maps not
used in the training phase. We quantify performance using the
average (normalized) root mean squared (rms) error computed
over the test evolution map at all propagation steps:

R =

√︄∑︁
d,i(xn,d,i − x̂n,d,i)

2∑︁
d,i(xn,d,i)

2 , (1)

where xn and x̂n denote GNLSE simulation and FNN prediction
for a particular realization n. Variables d and i indicate summa-
tion over intensity (spectral or temporal) and propagation steps,
respectively. When evaluating performance over an ensemble,
the error is calculated over N evolution maps.

We first show how the FNN can predict SC evolution from
transform-limited (TL) input pulses. We used an ensemble of
1400 simulations for training, and 100 for testing. The ensemble
of SC maps correspond to hyperbolic-secant input pulses at λ0 =

830 nm, with peak power and duration (FWHM) in the range
P0 = 0.77–1.43 kW and TFMHM = 70–130 fs (±30% variation).
The dispersion parameters are β2 = −5.90 × 10−27 s2m−1, β3 =

4.21 × 10−41 s3m−1, β4 = −1.25 × 10−55 s4m−1, and β5 = −2.45 ×

10−70 s5m−1 (zero-dispersion wavelength (ZDW) at 767 nm), and
the nonlinear coefficient is γ = 0.1 W−1m−1. The fiber length is
L = 20 cm. The FNN-predicted spectral evolution for input peak
power and pulse duration of 1.32 kW and 120 fs is shown in
Fig. 2(a). For comparison, we also plot the map from direct
GNLSE integration. The rms error is R = 0.098, while the
average error computed over the 100 test maps is R = 0.094. The
FNN accurately predicts the SC development, with dispersive
wave and soliton dynamics reproduced over ∼40 dB dynamic
range.

We next tested modeling of SC development from chirped
pulses. We performed 3000 simulations with parameters as
before, except with peak power variation of ±20% and input
spectral bandwidth varying from TL to twice the TL with ran-
dom sign of chirp. The predicted spectral evolution for pulses
with 942 W peak power, 84 fs duration, and positive chirp of
1.53 times the TL bandwidth are shown in Fig. 2(b). Again we
see how the main features (including spectral interference) are
well-reproduced by the FNN (R = 0.190), although we note a
small discrepancy in the distance of maximum compression at
−20 dB bandwidth. The rms error R = 0.383 (0.242 median)
computed over the 100 test ensembles shows that the network
accurately models chirped pulse dynamics.

These results correspond to typical anomalous dispersion
dynamics, but the network can be trained over a much wider
range of parameters using the normalized form of the GNLSE
to generate the training ensemble (see Supplement 1). Here we
map a specific set of dimensional parameters to normalized
values to predict the corresponding evolution. Figure 3 plots
predicted SC evolution (over 100 longitudinal steps) for a pump
wavelength in the normal dispersion region (see caption for
parameters). Specifically, Fig. 3(a) corresponds to a TL pulse
injected near the ZDW while Fig. 3(b) is for a pump wavelength
further detuned into the normal dispersion regime. We see very
good accuracy, with R = 0.141 for Fig. 3(a) and R = 0.043 for
Fig. 3(b). The rms error over an ensemble of 200 realizations is
R= 0.060. Time domain predictions are given in the Supplement
1 (Fig. S2).

To reduce computational memory and increase the speed in
the training phase, one can train the network from convolved
spectral intensity and phase evolution maps. At first sight,
a disadvantage of convolved data is that the resulting wave-
length–frequency grid is no longer on a Fourier grid, requiring
separate training to predict spectral and temporal evolution.
However, this is, in fact, a major benefit, because it allows
the appropriate selection of resolution in spectral or temporal
domains to optimally capture the relevant physical structure.

Results of predicted spectral evolution using convolved train-
ing data (using an 8 nm FWHM super-Gaussian spectral filter)
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Fig. 2. Comparing supercontinuum spectral evolution from (left) GNLSE integration and (middle) FNN prediction. The right panel shows
the spectral intensity and phase at distances indicated by the arrows. (a) Results for TL input pulses of peak power P0 = 1.32 kW and pulse
duration TFWHM = 120 fs. (b) Results for a chirped input pulse of peak power P0 = 942 W and pulse duration TFWHM = 84 fs, and positive
chirp of 1.53 times the TL bandwidth. The GNLSE simulations and FNN predictions were performed using 10000 and 200 longitudinal steps,
respectively.

Fig. 3. Spectral evolution from (left) GNLSE simulations and
(right) FNN predictions for: (a) normal near-ZDW pumping (γ =
0.01 W−1m−1, β2 = 1.3 × 10−27 s2m−1, β3 = 2 × 10−41s3m−1, P0 =

2.0 kW, λ0 = 835 nm, TFWHM = 100 fs); (b) far-normal pumping
(γ = 0.01 W−1m−1, β2 = 7.2 × 10−27 s2m−1, β3 = 2 × 10−41 s3m−1,
P0 = 13.6 kW, λ0 = 835 nm, TFWHM = 100 fs). The top panels show
spectral intensity and phase at the fiber output.

are shown in Fig. 4. These results use the same input pulse
and fiber parameters as in Fig. 2. We see how the FNN pre-
dictions remain accurate with mean convolved (logarithmic)
spectral intensity rms errors of 0.06 and 0.16 for TL and chirped
cases, respectively (calculated over 100 distinct test evolution
maps). Predictions using other spectral resolutions are given in
Supplement 1 (Fig. S3).

We then compared the computation resources and perfor-
mance of the FNN model and a RNN similar to that used in Ref.
[14]. The comparison was performed over an ensemble of 12000
(11800 for training and 200 for testing) convolved SC evolution
maps for anomalous dispersion dynamics with variations in peak
power, pulse duration, and dispersion (see Supplement 1) and
using 50 longitudinal prediction steps. Table 1 summarizes the
results, with examples of predicted maps shown in Supplement
1 (Fig. S4). We also list the resources used by the GNLSE sim-
ulations. Both FNN and RNN used the same number of free
parameters or network variables, but the RNN is trained from
spectral intensity maps, which reduces by half the number of
grid points compared with the FNN that includes both intensity
and phase. The computational advantage of the FNN is clear,
with training and prediction times reduced by a factor of four
and five, respectively, while memory usage during training is
decreased by a factor of two. As might be expected, the FNN
does show increased error compared with the RNN, but this does
not lead to significant visual differences in the evolution maps
obtained.

In general, comparing direct GNLSE integration and the FNN
(RNN) approach is a complex problem involving a number of
variables, such as the number of grid points and integration steps
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Fig. 4. Comparison between the spectral evolution (left) from
simulations (GNLSE) and (right) predicted by the neural network
(FNN) when using convolved evolution maps for training with
parameters identical to those in Fig. 2. The top panels show the
spectral intensity and phase at the fiber output.

Table 1. Comparison between Normalized GNLSE
Numerical Simulations, RNN Model [14], and FNN Model
for Convolved Spectral Data

GNLSE RNN FNN

rms error N/A R = 0.09 R = 0.19
Training timea N/A 7.7 h 1.9 h
Simulation timeb 38 min 1.6 s 0.35 s
Memorya 79 GB 7.7 GB 3.2 GB
Network var. N/A 600k 600k
Number of points 8192 132 264

a11800 simulations.
b200 simulations.

(GNLSE), and the propagation sampling interval and training
ensemble (FNN, RNN). The comparison also depends on the
particular simulation regime being considered; it is not possible
to provide a “one size fits all” estimate, although a comparison
over a range of parameters is given in Supplement 1. Key advan-
tages of the FNN are that training data can be discarded and
only hyper-parameters need to be stored, and that a trained FNN
can perform predictions with extremely short run times. How-
ever, attempting FNN prediction too far outside the parameter
range used in training can lead to errors, and retraining may be
necessary for new simulation regimes.

These results have shown model-free prediction of the full-
field dynamics of ultrashort pulse propagation in optical fiber
based on a FNN trained to recognize differential propaga-
tion dynamics within a GNLSE model. As compared with the
recently introduced RNN approach, this FNN method is simpler
and possesses significant advantages in speed and memory. We
expect our results to be of significance for real-time optimization

and control of nonlinear dynamics and we anticipate that this
approach could become a standard tool in nonlinear physics. As
a field of further study, it could be interesting to study transfer
learning in other NLSE-like systems.
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